

To Our Customers and Friends:

Akron Steel Treating Company and Summit Heat Treating Company have been in the metal heat treating business since 1943. Our experience in heat treating has taught us many things about the art and the science of metal treating. Our belief is the more we know about each other's process and product needs, the better able we are to meet those needs. Good communication is the foundation of good quality. For several years, we have offered plant tours and free Seminars, "Heat Treating for the Non-Heat Treater," in an effort to foster good communication with our Customers.

It is the intent of this booklet (compiled originally by Bethlehem Steel) to help our Customers to know more about the materials we work with, their properties and their applications. Although the information is believed to be correct, it is by no means a complete guide to heat treating. AST and Summit DO NOT WARRANT the correctness of the information nor its application to a particular product. This information is provided without cost to our Customers and does not create any EXPRESS OR IMPLIED WARRANTIES; AST and Summit are not liable for CONSEQUENTIAL DAMAGES and all work accepted or performed by AST and Summit is done pursuant to the Metal Treating Institute Statement of Limited Liability, a copy of which is on the reverse side of this page.

Thank you for your interest in our services. We look forward to serving your metal treating and black oxiding needs.

AKRON STEEL TREATING COMPANY

SUMMIT HEAT TREATING COMPANY

STL0322 Doc/AST

MTI STATEMENT OF LIMITED LIABILITY

(Please Read Carefully)
(Standards Adopted by the Metal Treating Institute, Inc.)

ALL WORK IS ACCEPTED SUBJECT TO THE FOLLOWING CONDITIONS:

It is recognized that even after employing all the scientific methods known to us, hazards still remain in metal treating. THEREFORE, OUR LIABILITY SHALL NOT EXCEED TWICE THE AMOUNT OF OUR CHARGES FOR THE WORK DONE ON ANY MATERIAL (FIRST TO REIMBURSE FOR THE CHARGES AND SECOND TO COMPENSATE IN THE AMOUNT OF THE CHARGES). EXCEPT BY WRITTEN AGREEMENT SIGNED BY THE METAL TREATER.

THE CUSTOMER, BY CONTRACTING FOR METAL TREATMENT, AGREES TO ACCEPT THE LIMITS OF LIABILITY AS EXPRESSED IN THIS STATEMENT TO THE EXCLUSION OF ANY AND ALL PROVISIONS AS TO LIABILITY ON THE CUSTOMER'S OWN INVOICES, PURCHASE ORDERS OR OTHER DOCUMENTS. IF THE CUSTOMER DESIRES HIS OWN PROVISIONS AS TO LIABILITY TO REMAIN IN FORCE AND EFFECT, THIS MUST BE AGREED TO IN WRITING, SIGNED BY AN OFFICER OF THE TREATER, IN SUCH EVENT, A DIFFERENT CHARGE FOR OUR SERVICES, REFLECTING THE HIGHER RISK TO TREATER, SHALL BE DETERMINED BY TREATER AND CUSTOMER.

THE TREATER MAKES NO EXPRESS OR IMPLIED WARRANTIES AND SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR MERCHANTABILITY, AS TO THE PERFORMANCE OF CAPABILITIES OF THE MATERIAL AS HEAT TREATED, OR THE HEAT TREAMENT. THE AFOREMENTIONED LIMITATION OF LIABILITY STATED ABOVE IS SPECIFICALLY IN LIEU OF ANY EXPRESS OR IMPLIED WARRANTY, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS, AND OF ANY OTHER SUCH OBLIGATION ON THE PART OF THE TREATER.

No claims for shortage in weight or count will be entertained unless presented within five (5) working days after receipt of materials by customer. No claims will be allowed for shrinkage, expansion, deformity, or rupture of material in treating or straightening, except by prior written agreement, as above, nor in any case for rupture caused by or occurring during subsequent grinding. Whenever we are given material with detailed instructions as to treatment, our responsibility shall end with the carrying out of those instructions. Failure by a customer to indicate plainly and correctly the kind of material (i.e., proper alloy designation) to be treated, shall cause an extra charge to be made to cover any additional expense incurred as a result thereof, but shall not change the limitation of liability stated above.

Customer agrees there will be no liability on the treater in contract or tort for any special, indirect or consequential damages arising from any reason whatsoever, including but not limited to personal injury, property damage, loss of profits, loss of production, recall or any other losses, expenses or liabilities allegedly occasioned by the work performed on the part of the treater.

It shall be the duty of the customer to inspect the merchandise immediately upon its return, and in any event claims must be reported prior to the time that any further processing, assembling or any other work is undertaken.

OUR LIABILITY TO OUR CUSTOMERS SHALL CEASE ONCE ANY FURTHER PROCESSING, ASSEMBLING OR ANY OTHER WORK HAS BEEN UNDERTAKEN ON SAID MATERIAL.

No agent or representative is authorized to alter the conditions, except by writing duly signed by an officer of treater.

Copyright 1987 © Metal Treating Institute All rights reserved

HEAT TREATING

ISO 9001:2000 & Nadcap

Aerospace, Automotive and

MIL-H-6875-H), AMS-2759*

*Certified to the most current

revision of heat treating specifications

CERTIFICATIONS

Military Qualified

QUALITY CONTROL

Heat Treaters

to delivery

Certified Journeymen

Networked JobShoppe™

from receipt to delivery

processing equipment

Project tracking from receiving

Spec-View[™] Data Logging for

Akron Steel

Treating

Company

336 Morgan Avenue

Akron, OH 44311

P.O. Box 2290

Akron. OH 44309-2290

330-773-8211

100% traceability and permanent

Quality assured on every shipment

· Certified testing and

Computer Program for job tracking

AMS-H-6875* (formerly

FOR THE COMPETITIVE

CAPABILITIES

FURNACE TYPES

Computer Controlled

- Vacuum/Nitrogen Pressure Quench
- Integral Quench/Atmosphere
- Salt Bath
- Continuous Shaker Hearth/Atmosphere-Oil Quench
- Intensive Water Quench

PROCESSES

Computer Controlled Annealing

- Bright
- Full
- Homogenize
- Isothermal

Hardening

- Controlled Atmosphere
- Furnace-Air, Oil or Water Quench
- Vacuum/Controlled Gas Quench
- Neutral Salts Bath **Automated Handling** Austempering Marquenching
- Precipitation Hardening Artificial Aging

Case Hardening

 Precision Gas Carburizing Carbonitriding

Ferritic Nitrocarburizing Carbon Restoration

Thermal Treatment for Plastics

ADDITIONAL SERVICES

- Black Oxide AMS 2485* MIL-DTL-13924*
- Deep Cryogenic to –300°
- Gauging and Sorting
- Laboratory Testing Rockwell Hardness Brinell Hardness Tukon Micro-Hardness Metallographic Microscope **Engineering Assistance**
- Tools Dies Plastic Molds
- Production Hardening
- Pick-up and Delivery Available

With pride, we participate in these orgranizations.

Fax: 330-773-8213

Toll Free: 1-800-364-ASTC(2782)

Email: info@AkronSteelTreating.com

www.AkronSteelTreating.com

Combining Art & Science for Solutions that Work

Contents

MODERN STEELMAKING	5
Raw Materials	5
Blast Furnace	6
Steelmaking Methods	6
The Steel Ingot	12
Types of Steel	12
Strand Casting	14
Vacuum Treatment	15
CARBON AND ALLOY STEELS	19
Effects of Chemical Elements	19
AISI/SAE Standard Grades and Ranges	25
HARDENABILITY OF STEEL	43
End-Quench Hardenability Testing	44
Calculation of Hardenability	46
Hardenability Limits Tables	51
THERMAL TREATMENT OF STEEL	61
Conventional Quenching and Tempering	61
Isothermal Treatments	63
Surface Hardening Treatments	66
Normalizing and Annealing	71
SAE Typical Thermal Treatments	74
GRAIN SIZE	81
MECHANICAL PROPERTIES OF CARBON AND ALLOY STEELS	84
MACHINABILITY OF STEEL	168
NONDESTRUCTIVE EXAMINATION	173
USEFUL DATA	177
GLOSSARY OF STEEL TESTING AND THERMAL TREATING TERMS	191
INDEX	200

MODERN STEELMAKING

Steel is essentially a combination of iron and carbon, the carbon content of common grades ranging from a few hundredths to about one per cent. All steels also contain varying amounts of other elements, principally manganese, phosphorus, sulfur, and silicon, which are always present if only in trace amounts. The presence and amounts of these and some 20 other alloying elements, which are added in various combinations as desired, determine to a great extent the ultimate properties and characteristics of the particular steel.

Raw Materials

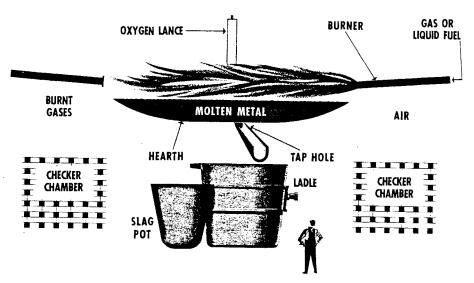
The principal raw materials of the steel industry are iron ore, iron and steel scrap, coal, and limestone. Iron ore is a natural combination of iron oxides and other materials, such as silicon and phosphorus. Until recently, the industry's main sources of iron were the high-grade ores, containing from 55 to 65 per cent iron, which were mined and sent directly to the steel plants. Today, the most available domestic iron ore is taconite, which contains a lesser amount of iron, making its use uneconomical without some kind of beneficiation, a process in which the material is upgraded and formed into high-iron-bearing pellets. Nearly one-half of the iron ore produced on this continent is now used in this pellet form.

A second source of iron is scrap. Most of this comes from the steel plant itself; only about two-thirds of the steel produced by steel plants is shipped as product, the remainder being discarded during processing and returned to the furnaces as scrap. Other scrap, if needed, comes from outside the plant from such sources as old automobiles, worn out railway cars and rails, obsolete machinery, and cuttings from metalworking shops.

Coal is converted into coke, gas, and chemicals in the coke ovens. The coke is used in the blast furnace as a fuel and reducing agent, the gas is burned in heating units, and the chemicals are processed into various organic materials.

Limestone is employed as a flux in both the blast furnace and steelmaking furnace where it serves to remove impurities from the melt. It is used either as crushed stone direct from the quarry or, after calcining, as burnt lime.

Blast Furnace

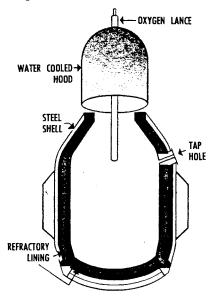

The principal charging material used in making steel is molten pig iron, the product of the blast furnace. To produce it, iron ore, coke, and limestone are charged into the top of the furnace. A continuous blast of preheated air, introduced near the bottom of the furnace, reacts with the coke to form carbon monoxide gas which then combines with the oxygen in the iron oxides, thereby reducing them to metallic iron. The molten iron is tapped into a ladle for transportation to the steel producing unit.

Pig iron contains considerable amounts of carbon, manganese, phosphorus, sulfur, and silicon. In the solid form, it is hard and brittle and therefore unsuitable for applications where ductility is important.

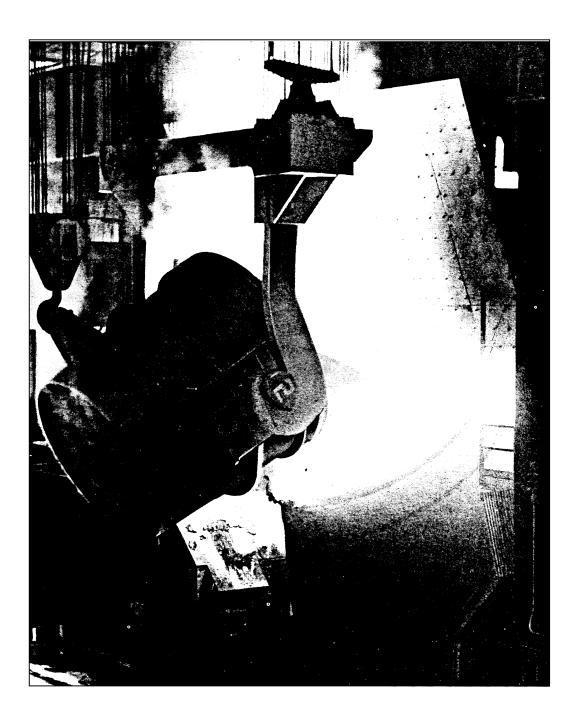
Steelmaking Methods

Steelmaking may be described as the process of refining pig iron or ferrous scrap by removing the undesirable elements from the melt and then adding the desired elements in predetermined amounts. These additions are often the same elements which were originally removed, the difference being that the elements present in the final steel product are in the proper proportion to produce the desired properties.

The open-hearth, the basic oxygen, and the electric-arc processes account for nearly all the steel tonnage produced in this country today. The open-hearth furnace was the nation's major source of steel until 1969, when this role was assumed by the relatively new basic oxygen process. Together, these two methods account for over 80 per cent of the steel made in America. The remainder is made up of electric furnace steels.


Simplified cutaway diagram of a typical open-hearth furnace, equipped with oxygen lance. Oxygen may be injected through one or more lances.

OPEN-HEARTH FURNACE. The open-hearth furnace has the ability to produce steels in a wide range of compositions. The process can be closely controlled, yielding steels of high quality from charges which need be only nominally restrictive in their analyses. Most modern open-hearth furnaces are lined with a chemically basic material, such as magnesite, and use a basic refining slag. Furnace capacities range from 100 to 500 tons per melt, or heat, each heat requiring from 4 to 10 hours of furnace time.


To begin the process, the basic open-hearth furnace is charged with scrap, limestone, and iron ore. This initial charge lies on an "open" hearth, where it is melted by exposure to flames sweeping over its surface. The pig iron, which may constitute as much as 75 per cent of the charge, is added in the molten state after the scrap is partially melted. During the subsequent refining of the heat—a process which is frequently accelerated by the introduction of oxygen through roof lances—nearly all of the manganese, phosphorus, and silicon are oxidized and retained by the slag, which floats on the heavier molten metal. Appreciable percentages of sulfur can also be taken into the slag.

The heat is allowed to react until its carbon content has been reduced by oxidation to approximately that desired in the finished steel. The furnace is then tapped, allowing the molten metal to flow into a ladle. To obtain the desired analysis, appropriate quantities of needed elements, usually in the form of ferroalloys, are added to the heat as it pours into the ladle, or, in the case of some elements, added to the furnace just prior to tapping. A deoxidizer, such as aluminum or ferrosilicon, is also normally added to control the amount of gas evolved during solidification (see p. 12). The heat is then usually poured into ingot molds where it solidifies into steel ingots.

BASIC OXYGEN FURNACE. The "BOF" involves the same chemical reactions as the open-hearth, but uses gaseous oxygen as the oxidizing agent to increase the speed of these reactions and thereby reduce the time of the refining process. Although the advantages of the use of oxygen were obvious to steelmakers a hundred years ago, only in recent years has the pure gas become commercially available in the vast quantities required to make the BOF feasible. Heats of steel as large as 300 tons can be made in less than an hour, several times faster than the average open-hearth can operate. The steel is of excellent quality, equivalent to open-hearth steel in every respect.

During the charging and tapping of the BOF, the oxygen lance is raised and the vessel is tilted.

The basic oxygen furnace, a closed-bottom, refractory-lined vessel, is charged with molten pig iron and scrap. During the oxygen blow, burnt lime and fluorspar, which form the slag, are charged into the furnace. A high-velocity stream of oxygen is directed down onto the charge through a water-cooled lance, causing the rapid oxidation of carbon, manganese, and silicon in the melt. These reactions provide the heat required for scrap melting, slag formation, and refining. Additions of deoxidizers and any required alloying elements are made as the steel is tapped from the vessel into the ladle. It is then usually poured into ingot molds, as with other steelmaking processes.

In keeping with the industry's trend to use the most advanced technologies, the entire process is usually controlled by a computer. From data on the analysis and weights of the charge materials and of melt samplings, the computer quickly determines the precise amounts of the additive elements needed, as well as the cycle time required for the refining operation.

ELECTRIC-ARC FURNACE. Special steels, such as the high-alloy, stainless, and tool steels, are normally made in electric-arc furnaces. The primary advantage of this type furnace is that it permits the extremely close control of temperature, heat analysis, and refining conditions required in the production of these complex steels. As another advantage, these furnaces can be operated efficiently on a cold metal charge, thereby eliminating the need for blast furnaces and associated facilities. For this reason, electric furnaces are today being used with increasing frequency for the production of standard carbon and alloy steels.

The furnace proper is round or elliptical, with carbon or graphite electrodes extending through the roof. In operation, the electrodes are lowered to a point near the charge, which is melted by the heat of the electricity arcing between the electrodes and the charge. When the charge of carefully selected steel scrap is about 70 per cent molten, iron ore and burnt lime are added. Alloying elements are added during a later stage of the refining process. Some 3 to 7 hours are required for each heat, depending mostly on the type of steel being produced. Furnace capacity can vary from a few hundred pounds to 200 tons or more.

Tapping a 50-ton, tilting electric-arc furnace.

Slag practice is geared to the economies of refining steels for different levels of quality. The standard carbon and alloy steels may be refined under a single slag to meet product requirements. Where cleanliness or a specific chemical analysis is the prime consideration, a double-slag practice may be used. The first of these is an oxidizing slag, used to remove some unwanted elements, principally phosphorus and some of the sulfur. This is discarded during the refining process and replaced by a reducing slag which serves to prevent excessive oxidation of the melt, thus enhancing cleanliness and the recovery of alloying additions of oxidizable elements. A further reduction in sulfur is also accomplished during this stage.

The Steel Ingot

The cross section of most ingots is square or rectangular with rounded corners and corrugated sides. Some round-corrugated ingots are produced, but have a limited usage. All ingot molds are tapered to facilitate removal of the ingot, which may be poured big-end-up or big-end-down depending on the type of steel and ultimate product.

All steel is subject to variation in internal characteristics as a result of natural phenomena which occur as the metal solidifies in the mold. The shrinkage which occurs in cooling may cause a central cavity known as "pipe" in the upper part of the ingot. The extent of the piping is dependent upon the type of steel involved, as well as the size and design of the ingot mold itself. Pipe is eliminated by sufficient cropping during rolling.

Another condition present in all ingots to some degree is non-uniformity of chemical composition, or segregation. Certain elements tend to concentrate slightly in the remaining molten metal as ingot solidification progresses. As a result, the top center portion of the ingot which solidifies last will contain appreciably greater percentages of these elements than indicated by the average composition of the ingot. Of the normal elements found in steels, carbon, phosphorus, and sulfur are most prone to segregate. The degree of segregation is influenced by the type of steel, pouring temperature, and ingot size. It will also vary within the ingot, and according to the tendency of the individual element to segregate.

Types of Steel

In most steelmaking processes the primary reaction involved is the combination of carbon and oxygen to form a gas. If the oxygen available for this reaction is not removed prior to or during pouring (by the addition of ferrosilicon or some other deoxidizer), the gaseous products continue to evolve during solidification. Proper control of the amount of gas evolved during solidification determines the type of steel. If no gas is evolved, the steel is termed "killed" because it lies quietly in the molds. Increasing degrees of gas evolution characterize semi-killed, capped, or rimmed steel.

RIMMED STEELS are only slightly deoxidized, thereby allowing a brisk effervescence, or evolution of gas to occur as the metal begins to solidify. The gas is produced by a reaction between the car-

bon and oxygen in the molten steel which occurs at the boundary between the solidified metal and the remaining molten metal. As a result, the outer skin, or "rim" of the ingot is practically free of carbon. The rimming action may be stopped mechanically or chemically after a desired period, or it may be allowed to continue until the action subsides and the ingot top freezes over, thereby ending all gas evolution. The center portion of the ingot, which solidifies after the rimming ceases, has a fairly pronounced tendency to segregate, as discussed above.

The low-carbon surface layer of rimmed steel is very ductile. Proper control of the rimming action will result in a very sound surface in subsequent rolling. Consequently, rimmed grades are particularly adaptable to applications involving cold forming, and where surface is of prime importance.

The presence of appreciable percentages of carbon or manganese will serve to decrease the oxygen available for the rimming action. If the carbon is above .25% and the manganese over .60%, the action is very sluggish or non-existent. If a rim is formed, it will be quite thin and porous. As a result, the cold-forming properties and surface quality are seriously impaired. It is therefore standard practice to specify rimmed steel only for grades with lower percentages of these elements.

KILLED STEELS are strongly deoxidized and are characterized by a relatively high degree of uniformity in composition and properties. The metal shrinks during solidification, thereby forming a cavity, or "pipe", in the uppermost portion of the ingot. Generally, these grades are poured in big-end-up molds. A refractory hot-top is placed on the mold before pouring and filled with metal after the ingot is poured. The pipe formed will be confined to the hot-top section of the ingot, which is removed by cropping during subsequent rolling. The most severely segregated areas of the ingot will also be eliminated by this cropping.

While killed steels are more uniform in composition and properties than any other type, they are nevertheless susceptible to some degree of segregation. As in the other grades, the top center portion of the ingot will exhibit greater segregation than the balance of the ingot.

The uniformity of killed steel renders it most suitable for applications involving such operations as hot-forging, cold extrusion, carburizing, and thermal treatment.

SEMI-KILLED STEELS are intermediate in deoxidation between rimmed and killed grades. Sufficient oxygen is retained so that its evolution counteracts the shrinkage on solidification, but there is no rimming action. Consequently, the composition is more uniform than in rimmed steel, but there is a greater possibility of segregation than in killed steel. Semi-killed steels are used where neither the surface and cold-forming characteristics of rimmed steel nor the greater uniformity of killed steels are essential requirements.

CAPPED STEELS are much the same as rimmed steels except that the duration of the rimming action is curtailed. A deoxidizer is usually added during the pouring of the ingot, with the result that a sufficient amount of gas is entrapped in the solidifying steel to cause the metal to rise in the mold. With the bottle-top mold generally used, action is stopped when the rising metal contacts a heavy metal cap placed on the mold after pouring. A similar effect can be obtained chemically by adding ferrosilicon or aluminum to the ingot top after the ingot has rimmed for the desired time. Action will be stopped and rapid freezing of the ingot top follows.

Capped steels have a thin low-carbon rim which imparts the surface and cold-forming characteristics of rimmed steel. The remainder of the cross section approaches the degree of uniformity typical of semi-killed steels. This combination of properties has resulted in a great increase in the use of capped steels in recent years, primarily for cold forming.

Strand Casting

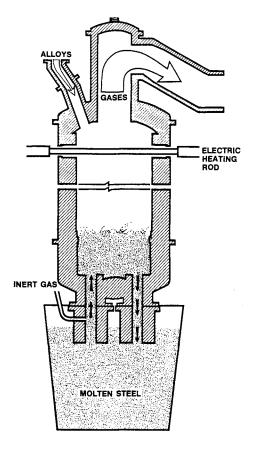
In traditional steelmaking, molten steel is poured into molds to form ingots. The ingots are removed from the molds, reheated, and rolled into semi-finished products—blooms, billets, or slabs.

Strand casting bypasses the operations between molten steel and the semi-finished product. Molten steel is poured at a regulated rate via a tundish into the top of an oscillating water-cooled mold with a cross-sectional size corresponding to that of the desired bloom, billet or slab. As the molten metal begins to freeze along the mold walls, it forms a shell that permits the gradual withdrawal of the strand product from the bottom of the mold into a water-spray chamber where solidification is completed. With the straight-type mold, the descending solidified product may be cut into suitable lengths while still vertical, or bent into the horizontal position by a series of rolls and then cut to length. With the curved-type mold, the solidified strand is roller-straightened after emerging from the cooling chamber, and then cut to length. In both cases, the cut lengths are then reheated and rolled into finished product as in the conventional manner.

Vacuum Treatment

Liquid steel contains measurable amounts of dissolved gases, principally oxygen, hydrogen, and nitrogen. For the great majority of applications, the effect of these gases on the properties of the solidified steel is insignificant and may be safely ignored. Some of the more critical applications, however, require steels with an exceptionally high degree of structural uniformity, internal soundness, or some other quality which may be impaired by the effects of uncontrolled amounts of dissolved gases. In such cases, certain steelmaking and deoxidation practices are specified to reduce and control the amounts of various gases in the steel. Supplementary vacuum treatment may also be used. This additional procedure of exposing the molten steel to a vacuum during the melting or refining process may be justified in order to achieve one or more of several results:

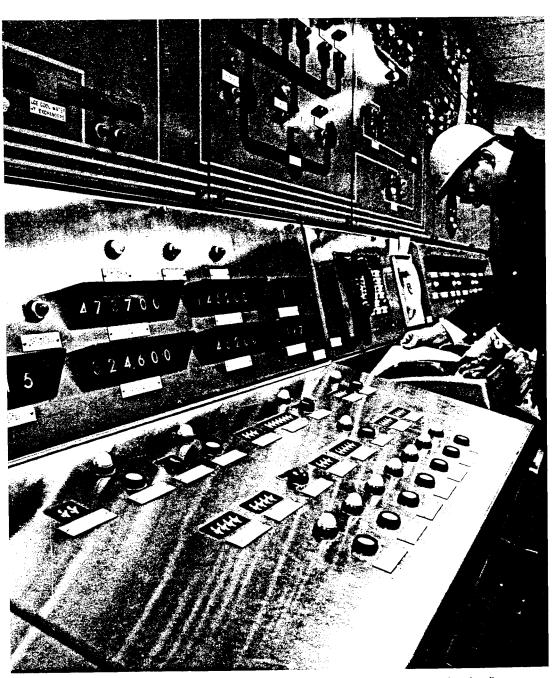
- Reduced hydrogen, thereby reducing tendency to flaking and embrittlement, and minimizing time for slow cooling of primary mill products.
- Reduced oxygen, thereby improving microcleanliness.
- Improved recovery and distribution of alloying and other additive elements.
- Closer control of composition.
- Higher and more uniform transverse ductility, improved fatigue resistance and elevated-temperature characteristics.
- Exceptionally low carbon content, normally unattainable with conventional refining practices.


Hydrogen removal by vacuum degassing is regularly specified for a variety of steels. Reducing the amount of this gas to levels where it can no longer cause flaking is of particular importance where the steel is to be used in large sections, such as for heavy forgings. The control of dissolved oxygen, however, is a more complex undertaking because of this element's great chemical activity. It can exist in solution as free oxygen or as a soluble non-metallic oxide; it can combine with carbon to form gaseous oxides; it can be present as complex oxides in steelmaking slags and refractories. As a consequence, deoxidation and other metallurgical procedures performed during refining must be carefully coordinated to assure a final steel product which will meet the specification requirements.

Conventional deoxidation at atmospheric pressure is normally accomplished by adding suitable metallic deoxidizers, such as silicon or aluminum, to the molten steel. The deoxidizers combine with dissolved oxygen to form silicates and oxides, which are largely retained in the solidified steel in the form of non-metallic inclusions. To minimize such inclusions, vacuum treatment is often specified. This is conducted in conjunction with the use of a metallic deoxidizer, and is most effective when the deoxidizer is added late in the vacuum-treatment cycle. Such practice is known as "vacuum carbon deoxidation" because the vacuum environment causes the dissolved oxygen to react with the bath carbon to form carbon monoxide gas, which is removed from the chamber by the pumping system. With most of the oxygen thus removed, the amounts of metallic deoxidizers required for final deoxidation is minimized, and a cleaner steel results.

Where the ultimate in cleanliness is required, steel can be melted as well as refined under vacuum. The vacuum induction melting, the consumable arc remelting, and the electroslag processes are all used in the production of certain specialty steels. These processes, however—particularly when used in combination—are expensive and are generally specified only for steels needed for the most critical applications.

There are three principal commercial processes used for vacuum treatment of steels produced by standard steelmaking methods:


(1) STREAM DEGASSING. In this process, molten steel from the furnace is tapped into a ladle from which it is poured into a vacuum chamber containing either 1) an ingot mold for subsequent direct processing of the steel into heavy forgings, or 2) a second ladle from which the steel is cast into smaller ingots for processing into semi-finished and bar products. As the liquid stream enters the chamber, the low pressure causes the steel to break up into droplets, facilitating the release of its gases into the chamber from which they are exhausted.

(2) CONTINUOUS CIRCULATION DEGASSING.

Here, a ladle containing molten steel is moved beneath a suspended vacuum vessel, which is essentially a chamber wherein the degassing or deoxidizing process occurs. When the vessel is lowered, its two refractory tubes are immersed in the steel. The chamber is then opened to a vacuum and inert gas is bubbled into one tube. This gas creates a density differential between the two tubes, thus allowing atmospheric pressure to move the molten metal up through one tube into the chamber and down through the other back into the ladle. Circulation is continued until the steel is degassed to the degree desired.

(3) LADLE DEGASSING. In this process, a ladle of molten steel is placed in a large tank which is then covered and sealed. Pumps exhaust the air from the tank and maintain the vacuum throughout the degassing operation. To expose the maximum amount of steel directly to the vacuum, the melt is usually stirred by electrical induction or agitated by argon gas introduced through orifices near the bottom of the ladle.

Nerve center for basic oxygen steelmaking is the computer room on the charging floor.

CARBON AND ALLOY STEELS

In commercial practice, carbon and alloy steels have some common characteristics, and differentiation between them is arbitrary to a degree. Both contain carbon, manganese, and usually silicon in varying percentages. Both can have copper and boron as specified additions. A steel qualifies as a carbon steel when its manganese content is limited to 1.65% max, silicon to .60% max, and copper to .60% max; with the exception of deoxidizers and boron when specified, no other alloying element is intentionally added. Alloy steels comprise not only those grades which exceed the above limits, but also any grade to which any element other than those mentioned above is added for the purpose of achieving a specific alloying effect.

The alloy steels discussed in this edition of Modern Steels are limited to the "constructional alloy steels," or those which depend on thermal treatment for the development of properties required for specific applications. Other important categories of alloy steels, such as high-strength, low-alloy steels (which are alloyed for the purpose of increasing strength in the as-rolled or normalized condition), corrosion- and heat-resisting steels, and tool steels, are discussed in other Bethlehem Steel Corporation publications, obtainable on request.

Effects of Chemical Elements

The effects of the commonly specified chemical elements on the properties of hot-rolled carbon and alloy bars are discussed here by considering the various elements individually. In practice, however, the effect of any particular element will often depend on the quantities of other elements also present in the steel. For example, the total effect of a combination of alloying elements on the hardenability of a steel is usually greater than the sum of their individual contributions. This type of interrelation should be taken into account whenever a change in a specified analysis is evaluated.

CARBON is the principal hardening element in steel, with each additional increment of carbon increasing the hardness and tensile strength of the steel in the as-rolled or normalized condition. As the carbon content increases above approximately .85%, the resulting increase in strength and hardness is proportionately less than it is for the lower carbon ranges. Upon quenching, the maximum attainable hardness also increases with increasing carbon, but above a content of .60%, the rate of increase is very small.

Conversely, a steel's ductility and weldability decreases as its carbon content is increased. The effect of carbon on machinability is discussed on page 171.

Carbon has a moderate tendency to segregate within the ingot, and because of its significant effect on properties, such segregation is frequently of greater importance than the segregation of other elements in the steel.

MANGANESE is present in all commercial steels, and contributes significantly to a steel's strength and hardness in much the same manner, but to a lesser extent, than does carbon. Its effectiveness depends largely upon, and is directly proportional to, the carbon content of the steel. Another important characteristic of this element is its ability to decrease the critical cooling rate during hardening, thereby increasing the steel's hardenability. Its effect in this respect is greater than that of any of the other commonly used alloying elements.

Manganese is an active deoxidizer, and shows less tendency to segregate within the ingot than do most other elements. Its presence in a steel is also highly beneficial to surface quality in that it tends to combine with sulfur, thereby minimizing the formation of iron sulfide, the causative factor of hot-shortness, or susceptibility to cracking and tearing at rolling temperatures.

PHOSPHORUS is generally considered an impurity except where its beneficial effect on machinability and resistance to atmospheric corrosion is desired. While phosphorus increases strength and hardness to about the same degree as carbon, it also tends to decrease ductility and toughness, or impact strength, particularly for steel in the quenched and tempered condition. The phosphorus content of most steels is therefore kept below specified maxima, which range up to .04 per cent.

In the free-machining steels, however, specified phosphorus content may run as high as .12%. This is attained by adding phosphorus to the ladle, commonly termed rephosphorizing. For a discussion of the effect of phosphorus on machinability, see page 169.

sulfur is generally considered an undesirable element except where machinability is an important consideration (see page 169). Whereas sulfides in steel act as effective chip-breakers to improve machinability, they also serve to decrease transverse ductility and impact strength. Moreover, increasing sulfur impairs weldability and has an adverse effect on surface quality. Steels with the higher sulfur contents—and particularly those with .15 to .25% carbon—require appreciable surface preparation during processing. Extra discard of these steels at the mill may also be necessary to minimize the amount of segregated steel in the finished product, inasmuch as sulfur, like phosphorus, shows a strong tendency to segregate within the ingot.

SILICON is one of the principal deoxidizers used in the manufacture of both carbon and alloy steels, and depending on the type of steel, can be present in varying amounts up to .35% as a result of deoxidation. It is used in greater amounts in some steels, such as the silico-manganese steels, where its effects tend to complement those of manganese to produce unusually high strength combined with good ductility and shock-resistance in the quenched and tempered condition. In these larger quantities, however, silicon has an adverse effect on machinability, and increases the steel's susceptibility to decarburization and graphitization.

NICKEL is one of the fundamental steel-alloying elements. When present in appreciable amounts, it provides improved toughness, particularly at low temperatures; simplified and more economical thermal treatment; increased hardenability; less distortion in quenching; and improved corrosion resistance.

Nickel lowers the critical temperatures of steel, widens the temperature range for effective quenching and tempering, and retards the decomposition of austenite. In addition, nickel does not form carbides or other compounds which might be difficult to dissolve during heating for austenitizing. All these factors contribute to easier and more successful thermal treatment. This relative insensitivity to variations in quenching conditions provides insurance against costly failures to attain the desired properties, particularly where the furnace is not equipped for precision control.

CHROMIUM is used in constructional alloy steels primarily to increase hardenability, provide improved abrasion-resistance, and to promote carburization. Of the common alloying elements, chromium is surpassed only by manganese and molybdenum in its effect on hardenability.

Chromium forms the most stable carbide of any of the more common alloying elements, giving to high-carbon chromium steels exceptional wear-resistance. And because its carbide is relatively stable at elevated temperatures, chromium is frequently added to steels used for high temperature applications.

A chromium content of 3.99% has been established as the maximum limit applicable to constructional alloy steels. Contents above this level place steels in the category of heat-resisting or stainless steels.

MOLYBDENUM exhibits a greater effect on hardenability per unit added than any other commonly specified alloying element except manganese. It is a non-oxidizing element, making it highly useful in the melting of steels where close hardenability control is desired.

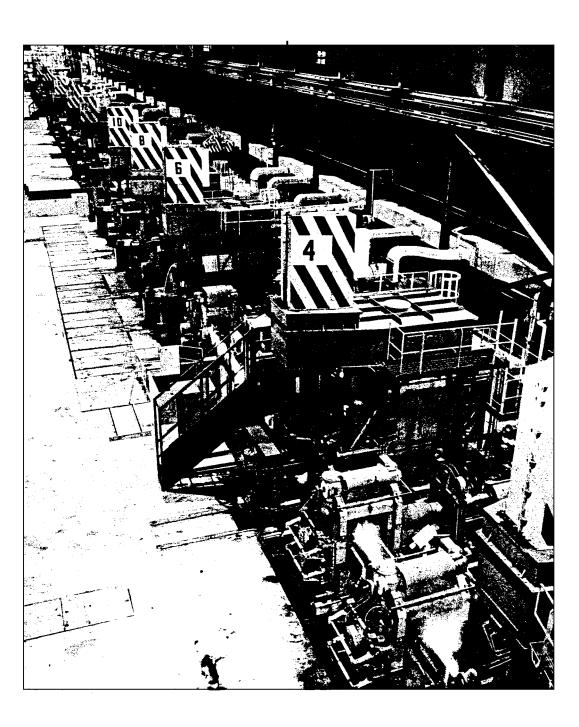
Molybdenum is unique in the degree to which it increases the high-temperature tensile and creep strengths of steel. Its use also reduces a steel's susceptibility to temper brittleness.

VANADIUM improves the strength and toughness of thermally treated steels, primarily because of its ability to inhibit graingrowth over a fairly broad quenching range. It is a strong carbideformer and its carbides are quite stable. Hardenability of medium-carbon steels is increased with a minimum effect upon grain size with vanadium additions of about .04 to .05%; above this content, the hardenability effect per unit added decreases with normal quenching temperatures due to the formation of insoluble carbides. However, the hardenability can be increased with the higher vanadium contents by increasing the austenitizing temperatures.

COPPER is added to steel primarily to improve the steel's resistance to corrosion. In the usual amounts of from .20 to .50%, the copper addition does not significantly affect the mechanical properties. Copper oxidizes at the surface of steel products during heating and rolling, the oxide forming at the grain boundaries and causing a hot-shortness which adversely affects surface quality.

BORON has the unique ability to increase the hardenability of steel when added in amounts as small as .0005%. This effect on hardenability is most pronounced at the lower carbon levels, diminishing with increasing carbon content to where, as the eutectoid composition is approached, the effect becomes negligible. Because boron is ineffective when it is allowed to combine with oxygen or nitrogen, its use is limited to aluminum-killed steels.

Unlike many other elements, boron does not increase the ferrite strength of steel. Boron additions, therefore, promote improved machinability and formability at a particular level of hardenability. It will also intensify the hardenability effects of other alloys, and in some instances, decrease costs by making possible a reduction of total alloy content.


LEAD does not alloy with steel. Instead, as added in pellet form during teeming of the ingot, it is retained in its elemental state as a fine dispersion within the steel's structure. Lead additions have no significant effect on the room temperature mechanical properties of any steel; yet, when present in the usual range of .15 to .35%, the lead additive enhances the steel's machining characteristics to a marked degree.

Although lead can be added to any steel, its use to date has been most significant with the free-machining carbon grades. Added to a base composition which has been resulfurized, rephosphorized, and nitrogen-treated, lead helps these steels achieve the optimum in machinability (see page 170).

NITROGEN is inherently present in all steels, but usually only in small amounts which produce no observable effect. Present in amounts above about .004%, however, nitrogen will combine with certain other elements to precipitate as a nitride. This increases the steel's hardness and tensile and yield strengths while reducing its ductility and toughness. Such effect is similar to that of phosphorus, and is highly beneficial to the machining performance of the steel (see page 169).

ALUMINUM is used in steel principally to control grain size (see page 81) and to achieve deoxidation. Aluminum-killed steels exhibit a high order of fracture toughness.

A specialized use of aluminum is in nitriding steels (see page 67). When such steels containing .95 to 1.30% aluminum are heated in a nitrogenous medium, they achieve a thin case containing aluminum nitride. This stable compound imparts a high surface hardness and exceptional wear resistance to the steels involved.

AISI and SAE Standard Grades and Ranges

The following tables list the ladle chemical ranges and limits in per cent for those grades of carbon and alloy steel bars, blooms, billets, slabs, and rods designated as standard by AISI (American Iron and Steel Institute) and/or SAE (Society of Automotive Engineers), and in effect as of the printing date of this book. The tables are not intended to be a listing of the steels which are produced or offered for sale by Bethlehem Steel Corporation.

Accompanying these tables are tables on product analysis tolerances and ladle chemical ranges and limits for both carbon and alloy steels.

NONRESULFURIZED

(Manganese 1.00 per cent maximum)

AISI/SAE Number	С	Mn	P Max	S Max
Number		IVIII	IVIAX	IVIAX
1005*	.06 max	.35 max	.040	.050
1006*	.08 max	.25/ .40	.040	.050
1008	.10 max	.30/ .50	.040	.050
1010	.08/.13	.30/ .60	.040	.050
1011†	.08/.13	.60/ .90	.040	.050
1012	.10/.15	.30/ .60	.040	.050
1013†	.11/.16	.50/ .80	.040	.050
1015	.13/.18	.30/ .60	.040	.050
1016	.13/.18	.60/ .90	.040	.050
1017	.15/.20	.30/ .60	.040	.050
1018 1019	.15/.20 .15/.20	.60/ .90 .70/1.00	.040 .040	.050 .050
1019	.13/.20	.70/1.00	.040	.050
1020	.18/.23	.30/ .60	.040	.050
1021	.18/.23	.60/ .90	.040	.050
1022	.18/.23	.70/1.00	.040	.050
1023	.20/.25	.30/ .60	.040	.050
1025	.22/.28	.30/ .60	.040	.050
1026	.22/.28	.60/ .90	.040	.050
1029	.25/.31	.60/ .90	.040	.050
1030	.28/.34	.60/ .90	.040	.050
1035	.32/.38	.60/ .90	.040	.050
1037	.32/.38	.70/1.00	.040	.050
1038	.35/.42	.60/ .90	.040	.050
1039	.37/.44	.70/1.00	.040	.050
1040	.37/.44	.60/ .90	.040	.050
1040	.40/.47	.60/ .90	.040	.050
1042	.40/.47	.70/1.00	.040	.050
1044	.43/.50	.30/ .60	.040	.050
1045	.43/.50	.60/ .90	.040	.050
1046	.43/.50	.70/1.00	.040	.050
1049	.46/.53	.60/ .90	.040	.050
			<u> </u>	<u> </u>

AISI/SAE Number	С	Mn	P Max	S Max
1050	.48/ .55	.60/ .90	.040	.050
1053	.48/ .55	.70/1.00	.040	.050
1055	.50/ .60	.60/ .90	.040	.050
1059* 1060 1064†	.55/ .65 .55/ .65	.50/ .80 .60/ .90 .50/ .80	.040 .040 .040	.050 .050 .050
1065† 1069†	.60/ .70 .60/ .70 .65/ .75	.60/ .90 .40/ .70	.040 .040 .040	.050 .050 .050
1070	.65/ .75	.60/ .90	.040	.050
1074†	.70/ .80	.50/ .80	.040	.050
1075†	.70/ .80	.40/ .70	.040	.050
1078	.72/ .85	.30/ .60	.040	.050
1080	.75/ .88	.60/ .90	.040	.050
1084	.80/ .93	.60/ .90	.040	.050
1085†	.80/ .93	.70/1.00	.040	.050
1086*	.80/ .93	.30/ .50	.040	.050
1090	.85/ .98	.60/ .90	.040	.050
1095	.90/1.03	.30/ .50	.040	.050

^{*}Standard grades for wire rods and wire only. †SAE only

NOTE: In the case of certain qualities, the foregoing standard steels are ordinarily furnished to lower phosphorus and lower sulfur maxima.

BARS AND SEMI-FINISHED

Silicon. When silicon ranges or limits are required, the values shown in the table for Ladle Chemical Ranges and Limits apply.

RODS

Silicon. When silicon is required, the following ranges and limits are commonly used for nonresulfurized carbon steels:

ALL PRODUCTS

Boron. Standard killed carbon steels may be produced with a boron addition to improve hardenability. Such steels can be expected to contain 0.0005 per cent minimum boron. These steels are identified by inserting the letter "B" between the second and third numerals of the AISI number, e.g., 10B46.

Lead. Standard carbon steels can be produced to a lead range of 0.15 to 0.35 per cent to improve machinability. Such steels are identified by inserting the letter "L" between the second and third numerals of the AISI number, e.g., 10L45.

Copper. When copper is required, 0.20 per cent minimum is generally used.

NONRESULFURIZED

(Manganese maximum over 1.00 per cent)

AISI/SAE Number	С	Mn	P Max	S Max
1513	.10/.16	1.10/1.40	.040	.050
1522	.18/.24	1.10/1.40	.040	.050
1524	.19/.25	1.35/1.65	.040	.050
1526	.22/.29	1.10/1.40	.040	.050
1527	.22/.29	1.20/1.50	.040	.050
1541	.36/.44	1.35/1.65	.040	.050
1548	.44/.52	1.10/1.40	.040	.050
1551	.45/.56	.85/1.15	.040	.050
1552	.47/.55	1.20/1.50	.040	.050
1561	.55/.65	.75/1.05	.040	.050
1566	.60/.71	.85/1.15	.040	.050

NOTE: In the case of certain qualities, the foregoing standard steels are ordinarily furnished to lower phosphorus and lower sulfur maxima.

NOTE: Addenda to table "Carbon Steels, Nonresulfurized (Manganese 1.00 per cent maximum)," p. 27, in reference to Silicon, Boron, Lead, and Copper, also apply to table above.

RESULFURIZED

AISI/SAE			P	
Number	С	Mn	Max	S
1110	.08/.13	.30/ .60	.040	.08/.13
1117	.14/.20	1.00/1.30	.040	.08/.13
1118	.14/.20	1.30/1.60	.040	.08/.13
4407	22/20	1 25 /1 65	040	00/42
1137	.32/.39	1.35/1.65	.040	.08/.13
1139	.35/.43	1.35/.165	.040	.13/.20
1140	.37/.44	.70/1.00	.040	.08/.13
1141	.37/.45	1.35/1.65	.040	.08/.13
1144	.40/.48	1.35/1.65	.040	.24/.33
1146	.42/.49	.70/1.00	.040	.08/.13
1151	.48/.55	.70/1.00	.040	.08/.13

BARS AND SEMI-FINISHED

Silicon. When silicon ranges and limits are required, the values shown in the table for Ladle Chemical Ranges and Limits apply.

RODS

Silicon.	When silicon is required,
	the following ranges and
	limits are commonly used:

Standard Steel Designations	Silicon Ranges or Limits, per cent
Up to 1110 incl	0.10 max
1116 and over	0.10 max; or 0.10 to 0.20; or 0.15 to 0.30

ALL PRODUCTS

Lead. See note on lead, p. 27.

REPHOSPHORIZED AND RESULFURIZED

AISI/SAE Number	С	Mn	P	s	Pb
1211	.13 max	.60/ .90	.07/.12	.10/.15	_
1212	.13 max	.70/1.00	.07/.12	.16/.23	_
1213	.13 max	.70/1.00	.07/.12	.24/.33	_
12L14	.15 max	.85/1.15	.04/.09	.26/.35	.15/.35
1215	.09 max	.75/1.05	.04/.09	.26/.35	_

Silicon. It is not common practice to produce these steels to specified limits for silicon because of its adverse effect on machinability.

Nitrogen. These grades are normally nitrogen treated unless otherwise specified.

Lead. See note on lead, p. 27.

BETHLEHEM FREE-MACHINING CARBON STEELS

Name	С	Mn	Р	S	Pb
Beth-Led	.09 max	.70/1.00	.07/.12	.26/.35	.15/.35
Beth-Led B	.15 max	.85/1.35	.04/.09	.40 min	.15/.35
1213-B	.09 max	.70/1.00	.07/.12	.26/.35	-

Silicon. It is not common practice to produce these steels to specified limits for silicon because of its adverse effect on machinability.

Nitrogen. Beth-Led and 1213-B are nitrogen treated.

CARBON STEELS

"M" Series

AISI Number	С	Mn	P Max	S Max
M1008	.10 max	.25/.60	.04	.05
M1010	.07/.14	.25/.60	.04	.05
M1012	.09/.16	.25/.60	.04	.05
M1015	.12/.19	.25/.60	.04	.05
M1017	.14/.21	.25/.60	.04	.05
M1020	.17/.24	.25/.60	.04	.05
M1023	.19/.27	.25/.60	.04	.05
M1025	.20/.30	.25/.60	.04	.05
M1031	.26/.36	.25/.60	.04	.05
M1044	.40/.50	.25/.60	.04	.05

NOTE: Standard ranges and limits do not apply to "M"-Series steels. NOTE: These modified steels are available in the indicated analyses only.

AISI/SAE Number	С	Mn	P Max	S Max	Si
1038 H	.34/.43	.50/1.00	.040	.050	.15/.30
1045 H	.42/.51	.50/1.00	.040	.050	.15/.30
1522 H	.17/.25	1.00/1.50	.040	.050	.15/.30
1524 H	.18/.26	1.25/1.75*	.040	.050	.15/.30
1526 H	.21/.30	1.00/1.50	.040	.050	.15/.30
1541 H	.35/.45	1.25/1.75*	.040	.050	.15/.30

CARBON BORON H-STEELS

These steels can be expected to contain 0.0005 to 0.003% boron.

AISI/SAE Number	С	Mn	P Max	S Max	Si
15B21 H	.17/.24	.70/1.20	.040	.050	.15/.30
15B35 H	.31/.39	.70/1.20	.040	.050	.15/.30
15B37 H	.30/.39	1.00/1.50	.040	.050	.15/.30
15B41 H	.35/.45	1.25/1.75*	.040	.050	.15/.30
15B48 H	.43/.53	1.00/1.50	.040	.050	.15/.30
15B62 H	.54/.67	1.00/1.50	.040	.050	.40/.60

^{*}Standard H-Steels with 1.75 per cent maximum manganese are classified as carbon steels.

NOTE: In the case of certain qualities, the foregoing standard steels are ordinarily furnished to lower phosphorus and lower sulfur maxima.

SEE ALSO: Note on Lead, page 27; and Note 1, page 39.

LADLE CHEMICAL RANGES AND LIMITS Bars, Blooms, Billets, Slabs, and Rods

Element	When maximum of specified element is, per cent	Range, per cent			
Carbon (Note 2)	To 0.12 incl Over 0.12 to 0.25 incl Over 0.25 to 0.40 incl Over 0.40 to 0.55 incl Over 0.55 to 0.80 incl Over 0.80	0.05 0.06 0.07 0.10 0.13			
Manganese	To 0.40 incl Over 0.40 to 0.50 incl Over 0.50 to 1.65 incl	0.15 0.20 0.30			
Phosphorus	To 0.040 incl Over 0.040 to 0.08 incl Over 0.08 to 0.13 incl	 0.03 0.05			
Sulfur	To 0.050 incl Over 0.050 to 0.09 incl Over 0.09 to 0.15 incl Over 0.15 to 0.23 incl Over 0.23 to 0.35 incl				
Silicon (Note 3)	To 0.10 incl Over 0.10 to 0.15 incl Over 0.15 to 0.20 incl Over 0.20 to 0.30 incl Over 0.30 to 0.60 incl				
Copper	When copper is required, 0.20 minimum is generally used.				
Lead (Note 4)	When lead is required, a range of 0.15/0.35 is generally used.				
Boron	When boron treatment is specified for killed carbon steels, a boron content of 0.0005 to 0.003 per cent can be expected.				

NOTE 1. In the case of certain qualities, lower phosphorus and lower sulfur maxima are ordinarily furnished.

NOTE 2. Carbon. The carbon ranges shown in the column headed "Range" apply when the specified maximum limit for manganese does not exceed 1.10 per cent. When the maximum manganese limit exceeds 1.10 per cent, add 0.01 to the carbon ranges shown above.

NOTE 3. Silicon. It is not common practice to produce a rephosphorized and resulfurized carbon steel to specified limits for silicon because of its adverse effect on machinability.

NOTE 4. Lead is reported only as a range (generally 0.15 to 0.35 per cent) since it is added to the ladle stream as the steel is being poured.

PRODUCT ANALYSIS TOLERANCES

Bars, Blooms, Billets, Slabs, and Rods

		Tolerance Over the Maximum Limit or Unde the Minimum Limit, per cent			
Element	Limit, or Maximum of Specified Range, per cent	To 100 sq in. incl	Over 100 to 200 sq in. incl	Over 200 to 400 sq in. incl	Over 400 to 800 sq in. incl
Carbon	To 0.25 incl Over 0.25 to 0.55 incl Over 0.55	0.02 0.03 0.04	0.03 0.04 0.05	0.04 0.05 0.06	0.05 0.06 0.07
Manganese	To 0.90 incl Over 0.90 to 1.65 incl	0.03 0.06	0.04 0.06	0.06 0.07	0.07 0.08
Phosphorus	Over maximum only, to 0.040 incl	0.008	0.008	0.010	0.015
Sulfur	Over maximum only	0.008	0.010	0.010	0.015
Silicon	To 0.35 incl Over 0.35 to 0.60 incl	0.02 0.05	0.02 —	0.03	0.04 —
Copper	Under minimum only	0.02	0.03	_	_
Lead	Over <i>and</i> under 0.15 to 0.35 incl	0.03	0.03		
Boron	Not subject to product analysis tolerances.				

NOTE 1. Rimmed or capped steels are characterized by a lack of uniformity in their chemical composition, especially for the elements carbon, phosphorus, and sulfur, and for this reason product analysis tolerances are not technologically appropriate for those elements.

NOTE 2. In all types of steel, because of the degree to which phosphorus and sulfur segregate, product analysis tolerances for those elements are not technologically appropriate for rephosphorized or resulfurized steels.

ALLOY STEELS

AISI/SAE Number	С	Mn	Ni	Cr	Мо	Other Elements
1330 1335 1340 1345	.28/.33 .33/.38 .38/.43 .43/.48	1.60/1.90 1.60/1.90 1.60/1.90 1.60/1.90	- - -			<u>-</u>
4012 ^{††} 4023	.09/.14 .20/.25	.75/1.00 .70/ .90	<u> </u>		.15/.25 .20/.30	_ _
4024 4027 4028 4032†† 4037 4042†† 4047	.20/.25 .25/.30 .25/.30 .30/.35 .35/.40 .40/.45 .45/.50	.70/ .90 .70/ .90 .70/ .90 .70/ .90 .70/ .90 .70/ .90 .70/ .90	- - - - -	- - - - -	.20/.30 .20/.30 .20/.30 .20/.30 .20/.30 .20/.30	S .035/.050 - .035/.050 - - - -
4118 4130 4135 ^{††} 4137 4140 4142 4145 4147 4150 4161	.18/.23 .28/.33 .33/.38 .35/.40 .38/.43 .40/.45 .43/.48 .45/.50 .48/.53 .56/.64	.70/ .90 .40/ .60 .70/ .90 .70/ .90 .75/1.00 .75/1.00 .75/1.00 .75/1.00 .75/1.00	 	.40/ .60 .80/1.10 .80/1.10 .80/1.10 .80/1.10 .80/1.10 .80/1.10 .80/1.10 .80/1.10	.08/.15 .15/.25 .15/.25 .15/.25 .15/.25 .15/.25 .15/.25 .15/.25 .15/.25	
4320 4340 E4340	.17/.22 .38/.43 .38/.43	.45/ .65 .60/ .80 .65/ .85	1.65/2.00 1.65/2.00 1.65/2.00	.40/ .60 .70/ .90 .70/ .90	.20/.30 .20/.30 .20/.30	_ _ _
4419†† 4422†† 4427††	.18/.23 .20/.25 .24/.29	.45/ .65 .70/ .90 .70/ .90	<u>-</u>	<u> </u>	.45/.60 .35/.45 .35/.45	_ _ _
4615 4617 ^{††} 4620 4621 ^{††} 4626	.13/.18 .15/.20 .17/.22 .18/.23 .24/.29	.45/ .65 .45/ .65 .45/ .65 .70/ .90 .45/ .65	1.65/2.00 1.65/2.00 1.65/2.00 1.65/2.00 .70/1.00	_ _ _ _ _	.20/.30 .20/.30 .20/.30 .20/.30 .15/.25	- - - -
4718†† 4720	.16/.21 .17/.22	.70/ .90 .50/ .70	.90/1.20 .90/1.20	.35/ .55 .35/ .55	.30/.40 .15/.25	<u> </u>
4815 4817 4820	.13/.18 .15/.20 .18/.23	.40/ .60 .40/ .60 .50/ .70	3.25/3.75 3.25/3.75 3.25/3.75		.20/.30 .20/.30 .20/.30	_ _ _

AISI/SAE Number	С	Mn	Ni	Cr	Mo	Other Elements
5015 ^{††} 5046 ^{††} 5060 ^{††}	.12/ .17 .43/ .48 .56/ .64	.30/ .50 .75/1.00 .75/1.00		.30/ .50 .20/ .35 .40/ .60		
5115 ^{††} 5120	.13/ .18 .17/ .22	.70/ .90 .70/ .90	<u>-</u>	.70/ .90 .70/ .90	_	_
5130 5132	.28/ .33	.70/ .90 .60/ .80	_	.80/1.10 .75/1.00	_	_
5135 5140 5145††	.33/ .38 .38/ .43 .43/ .48	.60/ .80 .70/ .90 .70/ .90		.80/1.05 .70/ .90	_	
5147 ^{††} 5150	.46/ .51 .48/ .53	.70/ .95 .70/ .90	_ 	.70/ .90 .85/1.15 .70/ .90	<u>-</u>	_
5155 5160	.51/ .59 .56/ .64	.70/ .90 .75/1.00		.70/ .90 .70/ .90		
50100 ^{††} E51100	.98/1.10 .98/1.10	.25/ .45 .25/ .45	_	.40/ .60 .90/1.15	_	
E52100	.98/1.10	.25/ .45	_	1.30/1.60		-V
6118 6150	.16/ .21 .48/ .53	.50/ .70 .70/ .90	_	.50/ .70 .80/1.10	_ _	.10/.15 .15 min
8115 ^{††}	.13/ .18	.70/ .90	.20/.40	.30/ .50	.08/.15	_
8615 8617	.13/ .18 .15/ .20	.70/ .90 .70/ .90	.40/.70 .40/.70	.40/ .60 .40/ .60	.15/.25 .15/.25	_
8620	.18/ .23	.70/ .90	.40/.70	.40/ .60	.15/.25	
8622 8625	.20/ .25 .23/ .28	.70/ .90 .70/ .90	.40/.70 .40/.70	.40/ .60 .40/ .60	.15/.25 .15/.25	_
8627	.25/ .30	.70/ .90	.40/.70	.40/ .60	.15/.25	_
8630 8637	.28/ .33 .35/ .40	.70/ .90 .75/1.00	.40/.70 .40/.70	.40/ .60 .40/ .60	.15/.25 .15/.25	
8640	.38/ .43	.75/1.00	.40/.70	.40/ .60	.15/.25	_
8642 8645	.40/ .45 .43/ .48	.75/1.00 .75/1.00	.40/.70 .40/.70	.40/ .60 .40/ .60	.15/.25 .15/.25	
8650 ^{††}	.48/ .53	.75/1.00	.40/.70	.40/ .60	.15/.25	_
8655 8660 ^{††}	.51/ .59 .56/ .64	.75/1.00 .75/1.00	.40/.70 .40/.70	.40/ .60 .40/ .60	.15/.25 .15/.25	-
8720	.18/ .23	.70/ .90	.40/.70	.40/ .60	.20/.30	_
8740 8822	.38/ .43 .20/ .25	.75/1.00 .75/1.00	.40/.70 .40/.70	.40/ .60 .40/ .60	.20/.30 .30/.40	_
			,		,	Si
9254 ^{††} 9255 ^{††}	.51/ .59 .51/ .59	.60/ .80 .70/ .95	_	.60/ .80 —	_	1.20/1.60 1.80/2.20
9260 9310 ^{††}	.56/ .64 .08/ .13	.75/1.00 .45/ .65	- 3.00/3.50	_ 1.00/1.40	 .08/.15	1.80/2.20
##\$AE onl		.45/ .05	3.00/3.50	1.00/1.40		Notes page 39

††SAE only

ALLOY H-STEELS

AISI/SAE Number	С	Mn	Ni	Cr	Мо	Other Elements
1330 H	.27/.33	1.45/2.05	_	_	_	_
1335 H	.32/.38	1.45/2.05	 		_	_
1340 H	.37/.44	1.45/2.05	_		_	<u> </u>
1345 H	.42/.49	1.45/2.05	_	_	_	_
4027 H	.24/.30	.60/1.00	_	_	.20/.30	_ S
4028 H	.24/.30	.60/1.00	_	_	.20/.30	.035/.050
4032 H ^{††}	.29/.35	.60/1.00	_	_	.20/.30	_
4037 H	.34/.41	.60/1.00		_	.20/.30	<u> </u>
4042 H ^{††}	.39/.46	.60/1.00		<u> </u>	.20/.30	
4047`H	.44/.51	.60/1.00		_	.20/.30	_
4118 H	.17/.23	.60/1.00	_	.30/ .70	.08/.15	_
4130 H	.27/.33	.30/ .70	_	.75/1.20	.15/.25	-
4135 H ^{††}	.32/.38	.60/1.00	-	.75/1.20	.15/.25	_
4137 H	.34/.41	.60/1.00		.75/1.20	.15/.25	<u> </u>
4140 H	.37/.44	.65/1.10	-	.75/1.20	.15/.25	_
4142 H	.39/.46	.65/1.10	_	.75/1.20	.15/.25	
4145 H	.42/.49	.65/1.10		.75/1.20	.15/.25	_
4147 H	.44/.51	.65/1.10	_	.75/1.20	.15/.25	_
4150 H	.47/.54	.65/1.10	_	.75/1.20	.15/.25	_
4161 H	.55/.65	.65/1.10	_	.60/ .95	.25/.35	_
4320 H	.17/.23	.40/ .70	1.55/2.00	.35/ .65	.20/.30	
4340 H	.37/.44	.55/ .90	1.55/2.00	.65/ .95	.20/.30	
E4340 H	.37/.44	.60/ .95	1.55/2.00	.65/ .95	.20/.30	_
4419 H ^{††}	.17/.23	.35/ .75		-	.45/.60	_
4620 H	.17/.23	.35/ .75	1.55/2.00	_	.20/.30	_
4621 H ^{††}	.17/.23	.60/1.00	1.55/2.00	_	.20/.30	
4626 H [†]	.23/.29	.40/ .70	.65/1.05	_	.15/.25	_
4718 H††	.15/.21	.60/ .95	.85/1.25	.30/ .60	.30/.40	
4720 H	.17/.23	.45/ .75	.85/1.25	.30/ .60	.15/.25	_
4815 H	.12/.18	.30/ .70	3.20/3.80	_	.20/.30	_
4817 H	.14/.20	.30/ .70	3.20/3.80	-	.20/.30	_
4820 H	.17/.23	.40/ .80	3.20/3.80	_	.20/.30	_

†AISI only ††SAE only

AISI/SAE Number	С	Mn	Ni	Cr	Mo	Other Elements
5046 H ^{††}	.43/.50	.65/1.10	_	.13/ .43	_	_
5120 H	.17/.23	.60/1.00	_	.60/1.00	_	_
5130 H	.27/.33	.60/1.00	-	.75/1.20	_	_
5132 H	.29/.35	.50/ .90	-	.65/1.10	_	_
5135 H	.32/.38	.50/ .90	_	.70/1.15	_	_
5140 H	.37/.44	.60/1.00		.60/1.00	_	
5145 Htt	.42/.49	.60/1.00		.60/1.00	_	_
5147 Hff	.45/.52	.60/1.05	_	.80/1.25	_	_
5150 H	.47/.54	.60/1.00	_	.60/1.00	· —	_
5155 H	.50/.60	.60/1.00		.60/1.00	_	_
5160 H	.55/.65	.65/1.10		.60/1.00		
6118 H	.15/.21	.40/ .80		.40/ .80		.10/.15
6150 H	.15/.21	.60/1.00	_	.75/1.20	_	.10/.15 .15 min
0150 H	.477.04	.00/1.00	_	.75/1.20	_	.15 11111
8617 H	.14/.20	.60/ .95	.35/.75	.35/ .65	.15/.25	_
8620 H	.17/.23	.60/ .95	.35/.75	.35/ .65	.15/.25	_
8622 H	.19/.25	.60/ .95	.35/.75	.35/ .65	.15/.25	
8625 H	.22/.28	.60/ .95	.35/.75	.35/ .65	.15/.25	_
8627 H	.24/.30	.60/ .95	.35/.75	.35/ .65	.15/.25	_
8630 H	.27/.33	.60/ .95	.35/.75	.35/ .65	.15/.25	
8637 H	.34/.41	.70/1.05	.35/.75	.35/ .65	.15/.25	
8640 H	.37/.44	.70/1.05	.35/.75	.35/ .65	.15/.25	_
8642 H	.39/.46	.70/1.05	.35/.75	.35/ .65	.15/.25	_
8645 H	.42/.49	.70/1.05	.35/.75	.35/ .65	.15/.25	-
8650 H ^{††}	.47/.54	.70/1.05	.35/.75	.35/ .65	.15/.25	
8655 H	.50/.60	.70/1.05	.35/.75	.35/ .65	.15/.25	
8660 H ^{††}	.55/.65	.70/1.05	.35/.75	.35/ .65	.15/.25	
8720 H	.17/.23	.60/ .95	.35/.75	.35/ .65	.20/.30	_
8740 H	.37/.44	.70/1.05	.35/.75	.35/ .65	.20/.30	_
8822 H	.19/.25	.70/1.05	.35/.75	.35/ .65	.30/.40	_
						Si
9260 H	.55/.65	.65/1.10	_	_	_	1.70/2.20
9310 H ^{††}	.07/.13	.40/ .70	2.95/3.55	1.00/1.45	.08/.15	_

ALLOY BORON STEELS

These steels can be expected to contain 0.0005 to 0.003% boron.

AISI/SAE Number	С	Mn	Ni	Cr	Mo
50B40††	.38/.43	.75/1.00	_	.40/.60	_
50B44	.43/.48	.75/1.00		.40/.60	
50B46	.44/.49	.75/1.00	i –	.20/.35	
50B50	.48/.53	.75/1.00		.40/.60	<u> </u>
50B60	.56/.64	.75/1.00		.40/.60	_
51B60	.56/.64	.75/1.00	_	.70/.90	_
81B45	.43/.48	.75/1.00	.20/.40	.35/.55	.08/.15
86B45 ^{††}	.43/.48	.75/1.00	.40/.70	.40/.60	.15/.25
94B15††	.13/.18	.75/1.00	.30/.60	.30/.50	.08/.15
94B17	.15/.20	.75/1.00	.30/.60	.30/.50	.08/.15
94B30	.28/.33	.75/1.00	.30/.60	.30/.50	.08/.15

††SAE only

(See Notes, page 39)

ALLOY BORON H-STEELS

These steels can be expected to have 0.0005% min boron content.

AISI/SAE Number	С	Mn	Ni	Cr	Mo
50B40 H ^{††}	.37/.44	.65/1.10		.30/ .70	_
50B44 H	.42/.49	.65/1.10		.30/ .70	_
50B46 H	.43/.50	.65/1.10		.13/ .43	_
50B50 H	.47/.54	.65/1.10		.30/ .70	_
50B60 H	.55/.65	.65/1.10		.30/ .70	_
51B60 H	.55/.65	.65/1.10	-	.60/1.00	
81B45 H	.42/.49	.70/1.05	.15/.45	30/ .60	.08/.15
86B30 H	.27/.33	.60/ .95	.35/.75	.35/ .65	.15/.25
86B45 H ^{††}	.42/.49	.70/1.05	.35/.75	.35/ .65	.15/.25
94B15 H ^{††}	.12/.18	.70/1.05	.25/.65	.25/ .55	.08/.15
94B17 H	.14/.20	.70/1.05	.25/.65	.25/ .55	.08/.15
94B30 H	.27/.33	.70/1.05	.25/.65	.25/ .55	.08/.15

††SAE only

(See Notes, page 39)

NOTES ON ALLOY TABLES

- 1. Grades shown with prefix letter E are made only by the basic electric furnace process. All others are normally manufactured by the basic open hearth or basic oxygen processes, but may be manufactured by the basic electric furnace process with adjustments in phosphorus and sulfur.
- 2. The phosphorus and sulfur limitations for each process are as follows:

	Maximum	per cent
	Р	S
Basic electric	0.025	0.025
Basic open hearth or basic oxygen	0.035	0.040
Acid electric or acid open hearth	0.050	0.050

- 3. Minimum silicon limit for acid open hearth or acid electric furnace alloy steel is .15 per cent.
- 4. Small quantities of certain elements are present in alloy steels, but are not specified or required. These elements are considered as incidental and may be present in the following maximum percentages: copper, .35; nickel, .25; chromium, .20; molybdenum, .06.
- 5. The listing of minimum and maximum sulfur content indicates a resulfurized steel.
- 6. Standard alloy steels can be produced to a lead range of .15/.35 per cent to improve machinability.
- 7. Silicon range for all standard alloy steels except where noted is .15/.30 per cent.

ALLOY STEELS

LADLE CHEMICAL RANGES AND LIMITS Bars, Blooms, Billets, Slabs, and Rods

		Range, pe	r cent	
Element	When maximum of specified element is, per cent	Open hearth or basic oxygen steel	Electric furnace steel	Maximum limit, per cent*
Carbon	To 0.55 incl Over 0.55 to 0.70 incl Over 0.70 to 0.80 incl Over 0.80 to 0.95 incl Over 0.95 to 1.35 incl	0.05 0.08 0.10 0.12 0.13	0.05 0.07 0.09 0.11 0.12	
Manganese	To 0.60 incl Over 0.60 to 0.90 incl Over 0.90 to 1.05 incl Over 1.05 to 1.90 incl Over 1.90 to 2.10 incl	0.20 0.20 0.25 0.30 0.40	0.15 0.20 0.25 0.30 0.35	
Phosphorus	Basic open hearth or basic of Acid open hearth steel Basic electric furnace steel Acid electric furnace steel	0.035 0.050 0.025 0.050		
Sulfur	To 0.050 incl Over 0.050 to 0.07 incl Over 0.07 to 0.10 incl Over 0.10 to 0.14 incl	0.015 0.02 0.04 0.05	0.015 0.02 0.04 0.05	
	Basic open hearth or basic of Acid open hearth steel Basic electric furnace steel Acid electric furnace steel	oxygen steel (N	lote 5)	0.040 0.050 0.025 0.050
Silicon	To 0.15 incl Over 0.15 to 0.20 incl Over 0.20 to 0.40 incl Over 0.40 to 0.60 incl Over 0.60 to 1.00 incl Over 1.00 to 2.20 incl Acid steels (Note 1)	0.08 0.10 0.15 0.20 0.30 0.40	0.08 0.10 0.15 0.20 0.30 0.35	
Nickel	To 0.50 incl Over 0.50 to 1.50 incl Over 1.50 to 2.00 incl Over 2.00 to 3.00 incl Over 3.00 to 5.30 incl Over 5.30 to 10.00 incl	0.20 0.30 0.35 0.40 0.50 1.00	0.20 0.30 0.35 0.40 0.50 1.00	

^{*}Applies to only nonrephosphorized and nonresulfurized steels.

		Range, per d	cent	
Element	When maximum of specified element is, per cent	Open hearth or basic oxygen steel	Electric furnace steel	
Chromium	To 0.40 incl Over 0.40 to 0.90 incl Over 0.90 to 1.05 incl Over 1.05 to 1.60 incl Over 1.60 to 1.75 incl Over 1.75 to 2.10 incl Over 2.10 to 3.99 incl	0.15 0.20 0.25 0.30 ** **	0.15 0.20 0.25 0.30 0.35 0.40 0.50	
Molybdenum	To 0.10 incl Over 0.10 to 0.20 incl Over 0.20 to 0.50 incl Over 0.50 to 0.80 incl Over 0.80 to 1.15 incl	0.05 0.07 0.10 0.15 0.20	0.05 0.07 0.10 0.15 0.20	
Tungsten	To 0.50 incl Over 0.50 to 1.00 incl Over 1.00 to 2.00 incl Over 2.00 to 4.00 incl	0.20 0.30 0.50 0.60	0.20 0.30 0.50 0.60	
Vanadium	To 0.25 incl Over 0.25 to 0.50 incl	0.05 0.10	0.05 0.10	
Aluminum	Up to 0.10 incl Over 0.10 to 0.20 incl Over 0.20 to 0.30 incl Over 0.30 to 0.80 incl Over 0.80 to 1.30 incl Over 1.30 to 1.80 incl	0.05 0.10 0.15 0.25 0.35 0.45	0.05 0.10 0.15 0.25 0.35 0.45	
Copper	To 0.60 incl Over 0.60 to 1.50 incl Over 1.50 to 2.00 incl	0.20 0.30 0.35	0.20 0.30 0.35	

^{**}Not normally produced in open hearth or basic oxygen furnaces.

NOTE 1. Minimum silicon limit for acid open hearth or acid electric furnace alloy steels is 0.15 per cent.

NOTE 2. Boron steels can be expected to have 0.0005 per cent minimum boron content.

NOTE 3. Alloy steels can be produced with a lead range of 0.15/0.35. A ladle analysis for lead is not determinable, since lead is added to the ladle stream while each ingot is poured.

NOTE 4. The chemical ranges and limits of alloy steels are produced to product analysis tolerances shown in Table on p. 42.

NOTE 5. In the case of certain qualities, lower phosphorous and lower sulphur maxima are ordinarily furnished.

ALLOY STEELS

PRODUCT ANALYSIS TOLERANCES Bars, Blooms, Billets, Slabs, and Rods

			e Over the Ma ne Minimum L		
Element	Limit, or Maximum of Specified Range, per cent	To 100 sq in. incl	Over 100 to 200 sq in. incl	Over 200 to 400 sq in. incl	Over 400 to 800 sq in. incl
Carbon	To 0.30 incl Over 0.30 to 0.75 incl Over 0.75	0.01 0.02 0.03	0.02 0.03 0.04	0.03 0.04 0.05	0.04 0.05 0.06
Manganese	To 0.90 incl Over 0.90 to 2.10 incl	0.03 0.04	0.04 0.05	0.05 0.06	0.06 0.07
Phosphorus	Over max only	0.005	0.010	0.010	0.010
Sulfur	Over max only*	0.005	0.010	0.010	0.010
Silicon	To 0.40 incl Over 0.40 to 2.20 incl	0.02 0.05	0.02 0.06	0.03 0.06	0.04 0.07
Nickel	To 1.00 incl Over 1.00 to 2.00 incl Over 2.00 to 5.30 incl Over 5.30 to 10.00 incl	0.03 0.05 0.07 0.10	0.03 0.05 0.07 0.10	0.03 0.05 0.07 0.10	0.03 0.05 0.07 0.10
Chromium	To 0.90 incl Over 0.90 to 2.10 incl Over 2.10 to 3.99 incl	0.03 0.05 0.10	0.04 0.06 0.10	0.04 0.06 0.12	0.05 0.07 0.14
Molybdenum	To 0.20 incl Over 0.20 to 0.40 incl Over 0.40 to 1.15 incl	0.01 0.02 0.03	0.01 0.03 0.04	0.02 0.03 0.05	0.03 0.04 0.06
Vanadium	To 0.10 incl Over 0.10 to 0.25 incl Over 0.25 to 0.50 incl Min value specified, check under min limit	0.01 0.02 0.03	0.01 0.02 0.03 0.01	0.01 0.02 0.03	0.01 0.02 0.03
Tungsten	To 1.00 incl Over 1.00 to 4.00 incl	0.04 0.08	0.05 0.09	0.05 0.10	0.06 0.12
Aluminum**	Up to 0.10 incl Over 0.10 to 0.20 incl Over 0.20 to 0.30 incl Over 0.30 to 0.80 incl Over 0.80 to 1.80 incl	0.03 0.04 0.05 0.07 0.10	- - - -	_ _ _ _	
Lead**	0.15 to 0.35 incl	0.03***		_	
Copper**	To 1.00 incl Over 1.00 to 2.00 incl	0.03 0.05		_	=
Titanium** Columbium**	To 0.10 incl	0.01***		_	
Zirconium**	To 0.15 incl	0.03	_	_	
Nitrogen**	To 0.30 incl	0.005		_	

[†]If the minimum of the range is 0.01%, the under tolerance is 0.005%.

NOTE: Boron is not subject to product analysis tolerances.

^{*}Sulfur over 0.060 per cent is not subject to product analysis.

^{**}Tolerances shown apply only to 100 sq in. or less.

^{***}Tolerance is over and under.

HARDENABILITY OF STEEL

Hardenability is a term used to designate that property of steel which determines the depth and distribution of hardness induced by quenching from the austenitizing temperature. Whereas the as-quenched surface hardness of a steel part is dependent primarily on carbon content and cooling rate, the *depth* to which a certain hardness level is maintained with given quenching conditions is a function of its hardenability. Hardenability is largely determined by the percentage of alloying elements present in the steel. Austenitic grain size, time and temperature during austenitizing, and prior microstructure also can have significant effects.

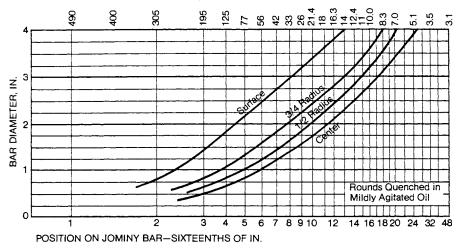
Since hardenability is determined by standard procedures as described below, it is constant for a given composition, whereas hardness will vary with the cooling rate. Thus, for a given composition, the hardness obtained at any location in a part will depend not only on carbon content and hardenability but also on the size and configuration of the part and the quenchant and quenching conditions used.

The hardenability required for a particular part depends on many factors, including size, design, and service stresses. For highly stressed parts, particularly those loaded principally in tension, the best combination of strength and toughness is attained by throughhardening to a martensitic structure followed by adequate tempering. Quenching such parts to a minimum of 80% martensite is generally considered adequate. Carbon steel can be used for thin sections, but as section size increases, alloy steels of increasing hardenability are required. Where only moderate stresses are involved, quenching to a minimum of 50% martensite is sometimes appropriate.

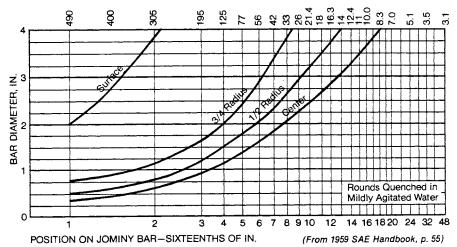
In order to satisfy the stress loading requirements of a particular application, a carbon or alloy steel having the required hardenability must be selected. Grades suitable for highly stressed parts are listed on page 60 according to the section sizes in which the properties shown can be attained by oil or water quenching to 80% martensite. Grades for moderately stressed parts (quenched to 50% martensite) are listed on pages 58 and 59. The usual practice is to select

the most economical grade which can consistently meet the desired properties. These tables should be used as a guide only, in view of the many variables which can exist in production heat-treating. Further, these tables are of only nominal use when the part must exhibit special properties which can be obtained only by composition (see Effects of Elements, page 19).

There are many applications where through-hardening is not necessary, or even desirable. For example, for parts which are stressed principally at or near the surface, or in which wear-resistance or resistance to shock loading are primary considerations, shallow-hardening steels or surface hardening treatments, as discussed below, may be appropriate.

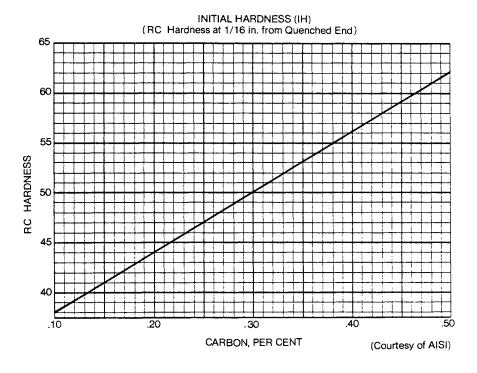

End-Quench Hardenability Testing

The most commonly used method of determining hardenability is the end-quench test developed by Jominy and Boegehold¹. In conducting the test, a 1-inch-round specimen 4 inches long is first normalized to eliminate the variable of prior microstructure, then heated uniformly to a standard austenitizing temperature. The specimen is removed from the furnace, placed in a jig, and immediately endquenched by a jet of water maintained at room temperature. The water contacts the end-face of the specimen without wetting the sides, and quenching is continued until the entire specimen has cooled. Longitudinal flat surfaces are ground on opposite sides of the quenched specimen, and Rockwell C scale readings are taken at 16thinch intervals for the first inch from the quenched end, and at greater intervals beyond that point until a hardness level of HRC 20 or a distance of 2 inches from the quenched end is reached. A hardenability curve is usually plotted using Rockwell C readings as ordinates and distances from the quenched end as abscissas. Representative data have been accumulated for a variety of standard grades and are published by SAE and AISI as H-bands. These show graphically and in tabular form the high and low limits applicable to each grade. Steels specified to these limits are designated as H-grades. Limits for standard H-grades are listed on pages 51-57.


Since only the end of the specimen is quenched in this test, it is obvious that the cooling rate along the surface of the specimen decreases as the distance from the quenched end increases. Experiments

¹For a complete description of this test, see the SAE Handbook J406, or ASTM Designation A255.

COOLING RATE, DEG. F PER SECOND AT 1300 DEG. F

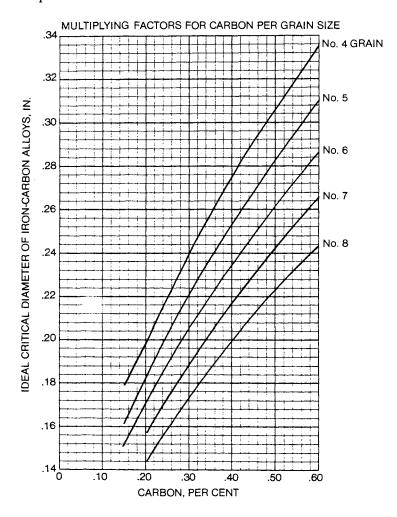

have confirmed that the cooling rate at a given point along the bar can be correlated with the cooling rate at various locations in rounds of various sizes. The graphs above show this correlation for surface, ¾ radius, ½ radius, and center locations for rounds up to 4 inches in diameter quenched in mildly agitated oil and in mildly agitated water. Similar data are shown at the top of each H-band as published by SAE and AISI. These values are not absolute, but are useful in determining the grades which may achieve a particular hardness at a specified location in a given section.

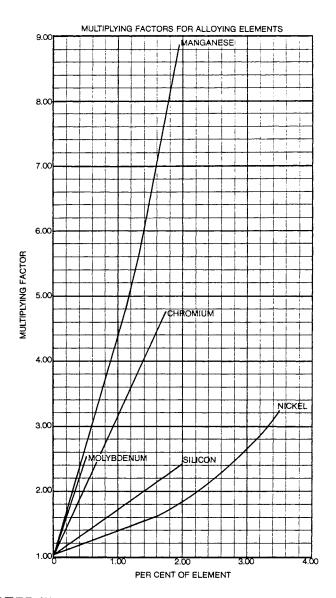
Calculation of End-Quench Hardenability Based on Analysis

It is sometimes desirable to predict the end-quench hardenability curve of a proposed analysis or of a commercial steel not available for testing. The method¹ described here affords a reasonably accurate means of calculating hardness at any Jominy location on a section of steel of known analysis and grain size.

To illustrate this method, consider a heat of 8640 having a grain size of No. 8 at the quenching temperature and the analysis shown in step II, below.

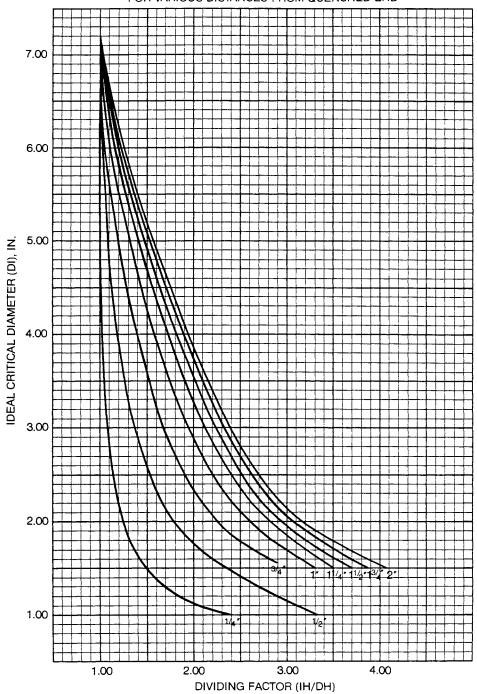
STEP I. Determine the initial hardness (IH). This is the hardness at $\frac{1}{16}$ inch on the end-quench specimen and is a function of the carbon content as illustrated by the graph below. The IH for .39% carbon is HRC 55.5.


¹Based on the work of M. A. Grossman, AIME, February 1942, and J. Field, Metal Progress, March 1943.


STEP II. Calculate the ideal critical diameter (DI). This is the diameter of the largest round of the given analysis which will harden to 50% martensite at the center during an ideal quench. The DI is the product of the multiplying factors representing each element.

From the graphs below and on page 48, find the multiplying factors for carbon at No. 8 grain size, and for the other elements:

	С	Mn	Si	Ni	Cr	Мо
Heat Analysis(%)	.39	.91	.25	.54	.56	.20
Multiplying Factor	.195	4.03	1.18	1.20	2.21	1.60


The product of these factors is 3.93 DI.

STEP III. Determine the IH/DH ratios corresponding to each Jominy distance for a DI of 3.93. The IH/DH ratio is based on the observation that with a DI 7.30 or greater, an end-quench curve approximating a straight line out to 2 inches is obtained, and that a DI less than 7.30 will produce a falling curve. The drop in hardness at any point on the curve may be conveniently expressed as a ratio of the maximum hardness attainable (IH) to the hardness actually obtained (DH). The IH/DH ratios, or dividing factors, are plotted on page 49.

RELATION BETWEEN DI AND DIVIDING FACTORS FOR VARIOUS DISTANCES FROM QUENCHED END

STEP IV.Calculate the Rockwell C hardness for each distance by dividing the IH (55.5) by each respective dividing factor:

Distance, in.	Dividing Factor	Calculated HRC
1/16		55.5
1/4	1.03	54
1/2	1.21	46
3/4	1.41	39.5
1	1.61	34.5
11/4	1.75	32
11/2	1.84	30
1¾	1.92	29
2	1.96	28.5

HARDENABILITY LIMITS

The following tables show maximum and minimum hardenability limits for carbon and alloy H-steels from the latest published data of AISI. These values are rounded off to the nearest Rockwell C hardness unit, and are to be used for specification purposes.

For steels which may have been designated as H-steels after the publishing date of this handbook, refer to the latest issues of the applicable AISI Carbon and Alloy Steel Products Manuals.

End-Quench Hardenability Limits

"J" Distance Sixteenths	Distance 1038 H		104	5 H	152	2 H	152	4 H	152	6 H	154	1 H
of an inch	Max	Min										
1 2 3 4	58 55 49 37	51 34 26 23	62 59 52 38	55 42 31 28	50 47 45 39	41 32 22 20	51 48 45 39	42 38 29 22	53 49 46 39	44 38 26 21	60 59 57 55	53 50 44 38
5 6 7 8	30 28 27 26	22 21	33 32 31 30	26 25 25 24	34 30 27		35 32 29 27		33 30 27 26		52 48 44 39	32 27 25 23
9 10 11 12	25		29	22			26 25	-	24 24		33	22
12	24		28	21			23		23		32	21
13 14 15 16	23		27	20			22	,			31	20
16	21		26								30	
18 20 22 24												
26 28 30 32				-								

End-Quench Hardenability Limits (Cont'd)

"J" Distance Sixteenths			15B3	5 H	15B3	7 H	15B4	1 Н	15B4	8 H	15B6	2 H
of an inch	Max	Min										
1 2 3 4	48 47 46 44	41 40 38 30	58 56 55 54	51 50 49 48	58 56 55 54	50 50 49 48	60 59 59 58	53 52 52 51	63 62 62 61	56 56 55 54		60 60 60
5 6 7 8	40 35 27 20	20	53 51 47 41	39 28 24 22	53 52 51 50	43 37 33 26	58 57 57 56	51 50 49 48	60 59 58 57	53 52 42 37	65 65 64 64	59 58 57 52
9 10 11 12			30 27	20	45 40	22 21	55 55 54 53	44 37 32 28	56 55 53 51	31 30 29 28	64 63 63 63	43 39 37 35
13 14 15 16			26 25		33 29	20	52 51 50 49	26 25 25 24	48 45 41 38	27 27 26 26	62 62 61 60	35 34 33 33
18 20 22 24			24 22		27 25		46 42 39 36	23 22 21 21	34 32 31 30	25 24 23 22	58 54 48 43	32 31 30 30
26 28 30 32			20		23		34 33 31 31	20	29 29 28 28	21 20	40 37 35 34	29 28 27 26

Distance Sixteenths	133	0 Н	133	5 H	134	0 Н	134	5 H	402 402		403	7 H
of an inch	Max	Min										
1 2 3 4	56 56 55 53	49 47 44 40	58 57 56 55	51 49 47 44	60 60 59 58	53 52 51 49	63 63 62 61	56 56 55 54	52 50 46 40	45 40 31 25	59 57 54 51	52 49 42 35
5 6 7 8	52 50 48 45	35 31 28 26	54 52 50 48	38 34 31 29	57 56 55 54	46 40 35 33	61 60 60 59	51 44 38 35	34 30 28 26	22 20	45 38 34 32	30 26 23 22
9 10 11 12	43 42 40 39	25 23 22 21	46 44 42 41	27 26 25 24	52 51 50 48	31 29 28 27	58 57 56 55	33 32 31 30	25 25 24 23		30 29 28 27	21 20
13 14 15 16	38 37 36 35	20	40 39 38 37	23 22 22 21	46 44 42 41	26 25 25 24	54 53 52 51	29 29 28 28	23 22 22 21		26 26 26 25	
18 20 22 24	34 33 32 31		35 34 33 32	20	39 38 37 36	23 23 22 22	49 48 47 46	27 27 26 26	21 20		25 25 25 24	
26 28 30 32	31 31 30 30		31 31 30 30		35 35 34 34	21 21 20 20	45 45 45 45	25 25 24 24			24 24 23 23	

''J'' Distance Sixteenths	404	7 H	411	8 H	413	0 Н	413	7 H	414	0 Н	414	2 H
of an inch	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min
1 2 3 4	64 62 60 58	57 55 50 42	48 46 41 35	41 36 27 23	56 55 53 52	49 46 42 38	59 59 58 58	52 51 50 49	60 60 60 59	53 53 52 51	62 62 62 61	55 55 54 53
5 6 7 8	55 52 47 43	35 32 30 28	31 28 27 25	20	49 47 44 42	34 31 29 27	57 57 56 55	49 48 45 43	59 58 58 57	51 50 48 47	61 61 60 60	53 52 51 50
9 10 11 12	40 38 37 35	28 27 26 26	24 23 22 21		40 38 36 35	26 26 25 25	55 54 53 52	40 39 37 36	57 56 56 55	44 42 40 39	60 59 59 58	49 47 46 44
13 14 15 16	34 33 33 32	25 25 25 25	21 20		34 34 33 33	24 24 23 23	51 50 49 48	35 34 33 33	55 54 54 53	38 37 36 35	58 57 57 56	42 41 40 39
18 20 22 24	31 30 30 30	24 24 23 23			32 32 32 31	22 21 20	46 45 44 43	32 31 30 30	52 51 49 48	34 33 33 32	55 54 53 53	37 36 35 34
26 28 30 32	30 29 29 29	22 22 21 21			31 30 30 29		42 42 41 41	30 29 29 29	47 46 45 44	32 31 31 30	52 51 51 50	34 34 33 33
"J"											_	
"J" Distance Sixteenths	414	5 H	414	7 H	415	0 H	416	1 H	432	0 Н	434	0 Н
Distance	414 Max	5 H Min	414 Max	7 H Min	415 Max	0 H Min	416 Max	1 H Min	432 Max	O H	434 Max	O H
Distance Sixteenths of an										· · · · · · · · · · · · · · · · · · ·		
Distance Sixteenths of an inch	Max	Min 56	Max 64 64 64	Min 57 57 56	Max 65 65	Min 59 59 59	Max 65 65 65	Min 60 60 60	Max	Min 41	Max 60 60 60	Min 53
Distance Sixteenths of an inch 1 2 3 4	Max 63 63 62 62	Min 56 55 55 54	Max 64 64 64 64 64	Min 57 57 56 56	65 65 65 65 65	Min 59 59 59 58 58 57 57	Max 65 65 65 65 65 65	Min 60 60 60 60 60	Max 48 47 45 43	Min 41 38 35 32 29 27	Max 60 60 60 60 60	Min 53 53 53 53 53 53
Distance Sixteenths of an inch 1 2 3 4	Max 63 63 62 62 62 61 61 61 60 60	Min 56 55 55 54 53 53 52 52 51 50 49	64 64 64 64 63 63 63 63	Min 57 56 56 56 55 55 55	Max 65 65 65 65 65 65 65 64	Min 59 59 59 58 58 57 57 56	Max 65 65 65 65 65 65 65 65	Min 60 60 60 60 60 60 60	Max 48 47 45 43 41 38 36 34	Min 41 38 35 32 29 27 25 23	Max 60 60 60 60 60 60 60 60	Min 53 53 53 53 53 53 53 52 52 52 51
Distance Sixteenths of an inch 1 2 3 4 4 5 6 6 7 8 8 9 10 11 1 12 13 14 15	Max 63 63 62 62 61 61 61 60 60 59 59 59 58	Min 56 55 55 54 53 53 52 52 51 50 49 48 46 45 43	Max 64 64 64 63 63 63 63 62 62 61 61 60	Min 57 57 56 56 55 55 54 54 53 52 51 49 48 46	Max 65 65 65 65 65 64 64 64 64 63 63	Min 59 59 59 58 58 57 56 56 55 54 53 51 50 48	Max 65 65 65 65 65 65 65 65 65 64 64 64	Min 60 60 60 60 60 60 59 59 59 58 58	Max 48 47 45 43 41 386 36 34 33 31 30 29 28 27	Min 41 38 35 32 29 27 25 23	Max 60 60 60 60 60 60 60 60 59 59 59 58	Min 53 53 53 53 53 53 53 53 53 55 52 52 52 51 51 50 49 49

End-Quench Hardenability Limits (Cont'd)

Distance Sixteenths	E4340 H	10 H	441	9 H	462	0 Н	462	1 H	462	6 H	471	8 H
of an inch	Max	Min	Max	Min								
1 2 3 4	60 60 60	53 53 53 53	48 45 41 34	40 33 27 23	48 45 42 39	41 35 27 24	48 47 46 44	41 38 34 30	51 48 41 33	45 36 29 24	47 47 45 43	40 40 38 33
5 6 7 8	60 60 60 60	53 53 53 53	30 28 27 25	21 20	34 31 29 27	21	41 37 34 32	27 25 23 22	29 27 25 24	21	40 37 35 33	29 27 25 24
9 10 11 12	60 60 60 60	53 53 53 53	25 24 24 23		26 25 24 23		30 28 27 26	20	23 22 22 21		32 31 30 29	23 22 22 21
13 14 15 16	60 59 59 59	52 52 52 51	23 22 22 21		22 22 22 21		26 25 25 24		21 20		29 28 27 27	21 21 20 20
18 20 22 24	58 58 58 57	51 50 49 48	21 20		21 20		24 23 23 22				27 26 26 25	
26 28 30 32	57 57 57 57	47 46 45 44					22 22 21 21				25 24 24 24 24	

"J" Distance Sixteenths	472	0 H	481	5 H	481	7 H	482	0 H	512	0 H	513	0 H
of an inch	Max	Min										
1 2 3 4	48 47 43 39	41 39 31 27	45 44 44 42	38 37 34 30	46 46 45 44	39 38 35 32	48 48 47 46	41 40 39 38	48 46 41 36	40 34 28 23	56 55 53 51	49 46 42 39
5 6 7 8	35 32 29 28	23 21	41 39 37 35	27 24 22 21	42 41 39 37	29 27 25 23	45 43 42 40	34 31 29 27	33 30 28 27	20	49 47 45 42	35 32 30 28
9 10 11 12	27 26 25 24		33 31 30 29	20	35 33 32 31	22 21 20 20	39 37 36 35	26 25 24 23	25 24 23 22		40 38 37 36	26 25 23 22
13 14 15 16	24 23 23 22		28 28 27 27		30 29 28 28		34 33 32 31	22 22 21 21	21 21 20		35 34 34 33	21 20
18 20 22 24	21 21 21 20		26 25 24 24		27 26 25 25		29 28 28 27	20 20			32 31 30 29	
26 28 30 32			24 23 23 23		25 25 24 24		27 26 26 25				27 26 25 24	

												
Distance Sixteenths	513	2 H	513	5 H	514	о н	514	5 H	514	7 H	515	0 Н
of an inch	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min
1 2 3 4	57 56 54 52	50 47 43 40	58 57 56 55	51 49 47 43	60 59 58 57	53 52 50 48	63 62 61 60	56 55 53 51	64 64 63 62	57 56 55 54	65 65 64 63	59 58 57 56
5 6 7 8	50 48 45 42	35 32 29 27	54 52 50 47	38 35 32 30	56 54 52 50	43 38 35 33	59 58 57 56	48 42 38 35	62 61 61 60	53 52 49 45	62 61 60 59	53 49 42 38
9 10 11 12	40 38 37 36	25 24 23 22	45 43 41 40	28 27 25 24	48 46 45 43	31 30 29 28	55 53 52 50	33 32 31 30	60 59 58 58	40 37 35 34	58 56 55 53	36 34 33 32
13 14 15 16	35 34 34 33	21 20	39 38 37 37	23 22 21 21	42 40 39 38	27 27 26 25	48 47 45 44	30 29 28 28	58 57 57 56	33 32 32 31	51 50 48 47	31 31 30 30
18 20 22 24	32 31 30 29		36 35 34 33	20	37 36 35 34	24 23 21 20	42 41 39 38	26 25 24 23	55 54 53 52	30 29 27 26	45 43 42 41	29 28 27 26
26 28 30 32	28 27 26 25		32 32 31 30		34 33 33 32		37 37 36 35	22 21	51 50 49 48	25 24 22 21	40 39 39 38	25 24 23 22
				! <u></u> _	<u> </u>					'		
				·	02							
"J" Distance Sixteenths	515	5 H	516	0 H		8 H	615	0 Н	861	L,	862	L
Distance	515	5 H Min		0 H Min		8 H Min		0 H Min		L,		L
Distance Sixteenths of an			516		611		615		861	7 H	862	0 Н
Distance Sixteenths of an inch	Max 65	Min	516 Max	Min	611 Max 46 44	Min 39 36	615 Max 65 65 64	Min 59 58 57	861 Max	7 H Min	862 Max	0 H Min 41 37
Distance Sixteenths of an inch 1 2 3 4	Max 65 64 64	Min 60 59 58 57	516 Max 65 65 64 64	Min 60 60 60 59	611 Max 46 44 38 33 30 28 27	Min 39 36 28 24	615 Max 65 65 64 64 63 63 62	Min 59 58 57 56	861 Max 46 44 41 38	7 H Min 39 33 27 24	862 Max 48 47 44 41	O H Min 41 37 32 27
Distance Sixteenths of an inch 1 2 3 4 5 6 7 8	65 64 64 63 63 62 62	Min 60 59 58 57 55 52 47 41 37 36 35	516 Max 65 65 64 64 63 62 61 60	Min 60 60 60 59 58 56 52 47	611 Max 46 44 38 33 30 28 27 26	Min 39 36 28 24	615 Max 65 65 64 64 63 63 62 61 61 60 59	Min 59 58 57 56 55 53 50 47	861 Max 46 44 41 38 34 31 28 27	7 H Min 39 33 27 24	862 Max 48 47 44 41 37 34 32 30	O H Min 41 37 32 27
Distance Sixteenths of an inch 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	65 64 64 63 63 62 62 62 61 60 59 57	Min 60 59 58 57 55 52 47 41 37 36 35 34 34 33 33	516 Max 65 65 64 63 62 61 60 59	Min 60 60 60 59 58 56 52 47 42 39 37 36 35 35 34	611 Max 46 44 38 33 30 28 27 26 25 25 24 24 23	Min 39 36 28 24	615 Max 65 65 64 64 63 63 62 61 61 60 59 58	Min 59 58 57 56 55 53 47 43 41 39 38 37 36 35	861 Max 46 44 41 38 34 31 28 27 26 25 24 23 23 22 22	7 H Min 39 33 27 24	862 Max 48 47 44 41 37 34 32 30 29 28 27 26 25 24	O H Min 41 37 32 27

End-Quench Hardenability Limits (Cont'd)

"J" Distance Sixteenths	Distance Sixteenths of an Mary Main	2 H	862	5 H	862	7 H	863	0 Н	863	7 H	864	0 H
	Max	Min	Max	Min-	Max	Min	Max	Min	Max	Min	Max	Min
1 2 3 4	50 49 47 44	43 39 34 30	52 51 48 46	45 41 36 32	54 52 50 48	47 43 38 35	56 55 54 52	49 46 43 39	59 58 58 57	52 51 50 48	60 60 60 59	53 53 52 51
5 6 7 8	40 37 34 32	26 24 22 20	43 40 37 35	29 27 25 23	45 43 40 38	32 29 27 26	50 47 44 41	35 32 29 28	56 55 54 53	45 42 39 36	59 58 57 55	49 46 42 39
9 10 11 12	31 30 29 28		33 32 31 30	22 21 20	36 34 33 32	24 24 23 22	39 37 35 34	27 26 25 24	51 49 47 46	34 32 31 30	54 52 50 49	36 34 32 31
13 14 15 16	27 26 26 25		29 28 28 27		31 30 30 29	21 21 20 20	33 33 32 31	23 22 22 21	44 43 41 40	29 28 27 26	47 45 44 42	30 29 28 28
18 20 22 24	25 24 24 24 24		27 26 26 26 26		28 28 28 27		30 30 29 29	21 20 20	39 37 36 36	25 25 24 24	41 39 38 38	26 26 25 25
26 28 30 32	24 24 24 24		26 25 25 25 25		27 27 27 27 27		29 29 29 29		35 35 35 35	24 24 23 23	37 37 37 37 37	24 24 24 24

Distance Sixteenths	864	2 H	864	5 H	865	5 H	872	0 Н	874	0 Н	882	2 H
of an inch	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min
1 2 3 4	62 62 62 61	55 54 53 52	63 63 63 63	56 56 55 54		60 59 59 58	48 47 45 42	41 38 35 30	60 60 60	53 53 52 51	50 49 48 46	43 42 39 33
5 6 7 8	61 60 59 58	50 48 45 42	62 61 61 60	52 50 48 45		57 56 55 54	38 35 33 31	26 24 22 21	59 58 57 56	49 46 43 40	43 40 37 35	29 27 25 24
9 10 11 12	57 55 54 52	39 37 34 33	59 58 56 55	41 39 37 35	65 65 64	52 49 46 43	30 29 28 27	20	55 53 52 50	37 35 34 32	34 33 32 31	24 23 23 22
13 14 15 16	50 49 48 46	32 31 30 29	54 52 51 49	34 33 32 31	64 63 63 62	41 40 39 38	26 26 25 25		49 48 46 45	31 31 30 29	31 30 30 29	22 22 21 21
18 20 22 24	44 42 41 40	28 28 27 27	47 45 43 42	30 29 28 28	761 60 59 58	37 35 34 34	24 24 23 23		43 42 41 40	28 28 27 27	29 28 27 27	20
26 28 30 32	40 39 39 39	26 26 26 26 26	42 41 41 41	27 27 27 27 27	57 56 55 53	33 33 32 32	23 23 22 22		39 39 38 38	27 27 26 26	27 27 27 27 27	

"J" Distance Sixteenths	926	0 Н	50B	44 H	50B4	46 H	50B	50 H	50B6	60 H	51 B	60 H
of an inch	Max	Min										
1 2 3 4	65 64	60 60 57 53	63 63 62 62	56 56 55 55	63 62 61 60	56 54 52 50	65 65 64 64	59 59 58 57		60 60 60 60		60 60 60
5 6 7 8	63 62 60 58	46 41 38 36	61 61 60 60	54 52 48 43	59 58 57 56	41 32 31 30	63 63 62 62	56 55 52 47	65	60 59 57 53		60 59 58 57
9 10 11 12	55 52 49 47	36 35 34 34	59 58 57 56	38 34 31 30	54 51 47 43	29 28 27 26	61 60 60 59	42 37 35 33	65 64 64 64	47 42 39 37	65	54 50 44 41
13 14 15 16	45 43 42 40	33 33 32 32	54 52 50 48	29 29 28 27	40 38 37 36	26 25 25 24	58 57 56 54	32 31 30 29	63 63 63 62	36 35 34 34	65 64 64 63	40 39 38 37
18 20 22 24	38 37 36 36	31 31 30 30	44 40 38 37	26 24 23 21	35 34 33 32	23 22 21 20	50 47 44 41	28 27 26 25	60 58 55 53	33 31 30 29	61 59 57 55	36 34 33 31
26 28 30 32	35 35 35 34	29 29 28 28	36 35 34 33	20	31 30 29 28		39 38 37 36	24 22 21 20	51 49 47 44	28 27 26 25	53 51 49 47	30 28 27 25
"J" Distance Sixteenths	81 B	45 H	94B	17 H	94B	30 H						

"J" Distance Sixteenths	81 B	45 H	94B	17 H	94B	30 H						
of an inch	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min
1 2 3 4	63 63 63 63	56 56 56 56	46 46 45 45	39 39 38 37	56 56 55 55	49 49 48 48						
5 6 7 8	63 63 62 62	55 54 53 51	44 43 42 41	34 29 26 24	54 54 53 53	47 46 44 42						
9 10 11 12	61 60 60 59	48 44 41 39	40 38 36 34	23 21 20	52 52 51 51	39 37 34 32					:	
13 14 15 16	58 57 57 56	38 37 36 35	33 32 31 30		50 49 48 46	30 29 28 27						
18 20 22 24	55 53 52 50	34 32 31 30	28 27 26 25		44 42 40 38	25 24 23 23						
26 28 30 32	49 47 45 43	29 28 28 27	24 24 23 23		37 35 34 34	22 21 21 20						

Mechanical properties obtainable with steels for

MODERATELY STRESSED PARTS OIL QUENCH

					Ro	und Secti	ons		
			To ½ in.	Over ½ in, to 1 in.	Over 1 in. to 1½ in.	Over 1½ in. to 2 in.	Over 2 in. to 2½ in.	Over 2½ in. to 3 in.	Over 3 in. to 3½ in.
		Hard- ness			Quenched	to 50% N	lartensite		
		after ouench-	Full radius	to center	At ½ ra	dius		At ¾ radius	
Yield	Hardness after	ing 50% marten			Jominy	Reference	Point		
strength, psi	temper, RC	site, min	3-1/2/16	6/16	7-1/2/16	10/16	10-1/2/16	13/16	15/16
90,000 to 125,000	23 to 30	42	1330H 4130H 5132H	8637H	3140H 8740H	4140H			
Over 125,000 to 150,000	30 to 36	44	1335H 4042H 5135H	3140H 4135H 8640H 8740H	4137H 6150H 8642H 8645H 8742H		4142H	4145H	4337H 86B45 9850
Over 150,000 to 170,000	36 to 41	48	1340H 3140H 4047H 4135H 50B40 5140H 8637H	4137H 4140H 5150H 8642H 8645H 8742H	4142H 50B50 5147H		4145H 8655H 9840	4147H 4337H 81B45 86B45	4340H
Over 170,000 to 185,000	41 to 46	51	4063H 4140H 50B44 5145H 5150H 8640H 8642H 8740H 8742H 9260H	4142H 4337H 50B50 5147H 6150H	4145H 50B60 81B45 8655H 9260H		4147H 4340H 51B60 81B45 86B45 8660H	4150H 9850	
Over 185,000	46 min	55	4150H 5160H 8655H 9262H	50B60	8660H				

Mechanical properties obtainable with steels for

MODERATELY STRESSED PARTS WATER QUENCH

					Ro	ound Secti	ons		
			To ⅓ in.	Over ½ in. to 1 in.	Over 1 in. to 1½ in.	Over 1½ in. to 2 in.	Over 2 in. to 2½ in.	Over 2½ in. to 3 in.	Over 3 in. to 3½ in.
		Hard-			Quenche	d to 50%	Martensite		
		ness after quench-	Full radius	s to center	At ½ r	adius		At ¾ radius	
Yield	Hardness after	ing 50% marten-			Jomin	γ Referen	ce Point		
strength, psi	psi RC	site, min	1-1/2/16	3/16	4/16	6/16	5/16	6-1/2/16	7-1/2/16
90,000 to 125,000	23 to 30	42	1040	1330H 4037H 4130H 5130H 5132H 8630H			1340H 4135H 8637H		3140H 8640H 8740H
Over 125,000 to 150,000	30 to 36	44	1036 1045 1330H 4130H 8630H		1335H 5135H		1340H 3140H 5140H 5145H 8637H	4135H 5150H 8640H 8740H	4137H 4140H 50B40 6150H 8642H 8645H 8742H
Over 150,000 to 170,000	36 to 41	48	1335H 4037H 5135H	4042H 50B40	1340H 4135H 50B40 5140H 8637H		4137H 50B40 5145H 8640H 8740H	4140H 50B44 6150H 8645H 8742H	50B50 5147H 9262H

NOTE: Parts made of steel with a carbon content of .33% or higher should not be water quenched without careful exploration for quench cracking.

Mechanical properties obtainable with steels for

HIGHLY STRESSED PARTS—OIL QUENCH

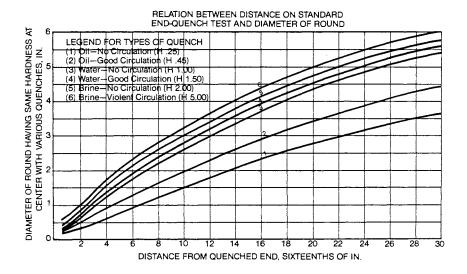
					Round	Sections			
			To ⅓ in.	Over ½ in. to 1 in.	Over 1 in. to 1½ in.	Over 1½ in. to 2 in.	Over 2 in. to 2½ in.	Over 2½ in. to 3 in.	Over 3 in. to 3½ in.
		Hard- ness			Quenched to 8	30% Marte	nsite		
		after quench-	Full radius to	center	At ½ rad	lius		At ¾ radius	
Yield	Hardness after	ing 80% marten-			Jominy Ref	erence Po	int		
strength, psi	temper, RC	site, min	3-1/2/16	6/16	7-1/2/16	10/16	10-1/2/16	13 /16	15/16
90,000 to 125,000	23 to 30	42	1330H 4130H 5132H						
Over 125,000 to 150,000	30 to 36	44	1335H 5135H	3140H 4135H 50B40 8640H 8740H	4137Н	4142H 81B45		9840	4337H 86B45 9850
Over 150,000 to 170,000	36 to 41	48	1340H 5140H 3140H 8637H 4047H 4135H 50B40	4137H 8642H 8645H 8742H	4140H		4145H 9840	4147 4147H 4337H 81B45 86B45	4340H
Over 170,000 to 185,000	41 to 46	51	4063H 8640H 4140H 8642H 50B44 8740H 50B50 8742H 5145H 9260H 5150H	50B50 5147H 5160H 6150H 9262H	4142H 8650H 4145H 8655H 4337H 50B60 81B45		4147H 4340H 81B45 86B45	4150H 9850	
Over 185,000	46 min	55	4150H 8655H 50B60 9262H 5160H		8660H				

WATER QUENCH

			Jominy Reference Point						
			1-1/2/16	3/16	4/16	6/16	5 /16	6-1/2/16	7-1/2 /16
90,000 to 125,000	23 to 30	42		1330H 4130H 5130H 5132H 8630H					
Over 125,000 to 150,000		44	1330H 5132H 4130H 8630H 5130H	5132H			1340H 3140H 50B40 8637H	4135H	4137H

NOTE: Parts made of steel with a carbon content of .33% or higher should not be water quenched without careful exploration for quench cracking.

THERMAL TREATMENT OF STEEL


The versatility of steel is attributable in large measure to its response to a variety of thermal treatments. While a major percentage of steel is used in the as-rolled condition, thermal treatment greatly broadens the spectrum of properties attainable. Treatments fall into two general categories: (1), those which increase the strength, hardness and toughness by virtue of rapid cooling from above the transformation range, and (2), those which decrease hardness and promote uniformity by slow cooling from above the transformation range, or by prolonged heating within or below the transformation range, followed by slow cooling. The first category can involve throughhardening by quenching and tempering, or a variety of specialized treatments undertaken to enhance hardness of the surface to a controlled depth. The second category encompasses normalizing and various types of annealing, the purpose of which may be to improve machinability, toughness, or cold forming characteristics, or to relieve stresses and restore ductility after a processing which has involved some form of cold deformation.

Conventional Quenching and Tempering

As discussed in the previous section, the best combination of strength and toughness is usually obtained by suitably tempering a quenched microstructure consisting of a minimum of 80% martensite throughout the cross section. Steels of suitable hardenability attain this martensitic structure when liquid-quenched from their austenitizing temperatures. Those used most frequently for quenched and tempered parts contain from .30 to .60% carbon, although the carbon specification for any particular application must be determined by the surface hardness and overall strength level required. The hardenability necessary to attain the desired through hardening is a function of the section size and the quenching parameters (see graph, page 62).

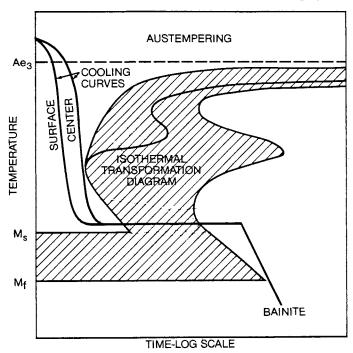
Plain carbon steels with low manganese content can be throughhardened only in very thin sections when a mild quench is used. With higher manganese carbon grades, or more drastic quenches, somewhat heavier sections can be quenched effectively. For sections beyond the hardening capability of carbon steels, carbon-boron or alloy steels are required.

QUENCHING MEDIA. As indicated above, the mechanical properties obtained in a quenched part are primarily dependent upon the hardenability of the steel as determined by its chemical composition and by the rate at which it is cooled from the austenitizing temperature. Once the desired cooling rate has been determined, a variety of factors must be considered before the method of achieving that rate can be specified. A part with a specific mass will cool at a rate determined by its temperature in relation to that of the quenching medium, by the characteristics of that medium, and by the quenching conditions used. Furthermore, the cooling rate developed in a particular quenching facility will depend on the volume of the quenching medium as well as its temperature, specific heat, viscosity, and degree of agitation. Careful selection of the quenching medium is essential. For example, use of a drastic quench will make possible the development of a given set of properties in a steel of a specific hardenability. However, size and design of the part, or the steel composition itself, may be such that a drastic quench will cause quench cracks or distortion. Under these conditions, overall economy as well as safety will best be served by using a quenchant with less cooling capacity and a steel of greater hardenability.

The most common quenching media are water and various mineral oils. In most quenching facilities, water is maintained at a temperature of about 65 F. As the water temperature increases, or as the amount of agitation during the quench decreases, there is an increasing tendency for an envelope of steam to form around the part. Because this envelope interferes with the flow of water around the part, it reduces the water's effective cooling capacity. A brine of 5 to 10% sodium chloride has a lower tendency than plain water to form an envelope, and therefore provides a more effective quench. Sodium hydroxide solutions are even more effective. The brine and sodium hydroxide solutions are generally used on very shallow-hardening steels to attain high surface hardness while retaining a ductile core.

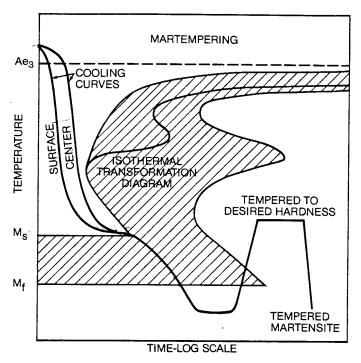
Quenching oils providing a wide variety of cooling rates are available commercially. These are characterized by relative stability and chemical inactivity with respect to hot steel, high flash point, and little change in cooling capacity with normal variation in temperature. Most production quenching facilities incorporate cooling coils to maintain the oil bath at a reasonably constant temperature, and provide for sufficient agitation to minimize localized effects of vapor envelopes formed during quenching.

Regardless of the quenching medium used, it is of utmost importance to temper parts immediately after the quenching operation. Delay in tempering greatly increases the risk of cracking, since the as-quenched part is in a highly stressed condition.


Isothermal Treatments

The preceding sections are concerned with hardening of steel by quenching, using a medium which is at or near room temperature. Another approach to the thermal treatment of steels involves isothermal transformation, accomplished by quenching in a medium held at a constant temperature. For a given steel it may be shown by means of a series of test specimens quenched in media at various temperatures that the time required for the beginning and for the completion of transformation varies considerably. By plotting the various quenching bath temperatures against the time interval required for inception and completion of transformation (on a logarithmic scale) the so-called "S" curve, or TTT (time-temperature-transformation) curve is produced.

It is not within the scope of this book to engage in a lengthy technical discussion of these curves. Some features of the curves have received rather widespread application and will be presented in the following sections. These applications involve both annealing and hardening.


Each steel has a temperature range in which transformation takes place quite rapidly. This occurs at a fairly elevated temperature, and that section of the transformation curve is often referred to as the nose of the curve. Above or below this rapid transformation range, the times required for the critical changes are considerably greater. In order to harden steel it is necessary to quench at such a rate that transformation at the higher temperatures is avoided. If the bath temperature is below approximately 400 F, martensite will form. The highest temperature at which martensite will start to form is termed the M_s temperature. The M_f temperature is the highest temperature at which the transformation can be considered complete. If the quenching bath temperature is above the M_s temperature, other microstructures are formed, as discussed below.

Quenching at a temperature above that of the nose of the curve results in a soft structure after completion of transformation and subsequent cooling to room temperature. (See Annealing, page 71.)

AUSTEMPERING is a hardening treatment which consists of quenching in a molten salt bath maintained somewhat above the M_s temperature, and holding until transformation is complete. The product formed is termed lower bainite and is somewhat softer than martensite.

The advantage of austempering is the high degree of freedom it provides from distortion and quenching cracks. Higher hardenability material must be used, however, to insure against transformation occurring at the nose of the curve, since cooling rates in molten salt baths may be lower than in the oil or water used in conventional quenching. The transformation rate of the higher hardenability steels is quite slow in the temperature range involved, and therefore, austempering has the disadvantage of requiring more time than other quenching methods, even though it is not followed by a tempering treatment.

MARTEMPERING involves quenching from the normal austenitizing temperature in a molten salt bath maintained at approximately the M_s temperature. The part is held at this temperature for a period of time sufficient to allow equalization of temperature within the part, but not long enough to permit any transformation to

occur. The material is then removed from the bath and allowed to cool in air through the martensite range, followed by the customary tempering treatment to obtain the desired mechanical properties.

Like austempering, martempering tends to minimize distortion and quench cracking, since the high stresses typical of conventional quenching are avoided. The two processes also share the characteristic of requiring higher hardenability steels than those suitable for conventional quenching, as mentioned above. However, martempering compares favorably with full quenching as far as time is concerned, since the material need only be held for temperature equalization.

Surface Hardening Treatments

A variety of applications require high hardness or strength primarily at the surface; for example, instances involving wear or torsional loading. Service stresses are frequently complex, necessitating not only a hard, wear-resistant surface, but also core strength and toughness to withstand tensile or impact stresses and fatigue. Treatments required to achieve these properties involve two general types of processes: those in which the chemical composition of the surface is altered prior to quenching and tempering; and those in which only the surface layer is hardened by the heating and quenching process employed. The first category includes carburizing, cyaniding, carbo-nitriding, and nitriding. The most common processes included in the second category are flame hardening and induction hardening.

CARBURIZING. In this process, carbon is diffused into the surface of the part to a controlled depth by heating in a carbonaceous medium. The resultant depth of carburization, commonly referred to as case depth, depends on the carbon potential of the medium used and the time and temperature of the carburizing treatment. The steels most suitable for carburizing are those with sufficiently low carbon contents (usually below .30%) to enhance toughness. The actual carbon level, as well as the necessary hardenability and the type of quench, is determined by the section size and the desired core hardness.

There are three types of carburizing in general use:

LIQUID CARBURIZING involves heating in barium cyanide or sodium cyanide at temperatures ranging from 1550 to

1750 F. The temperature and the time at temperature are adjusted to obtain various case depths, usually up to .03 inch, although greater depths are possible. The case absorbs some nitrogen in addition to carbon, thus enhancing surface hardness.

GAS CARBURIZING involves heating in a gas of controlled carbon potential such that the steel surface absorbs carbon. Case depths in the range of .01 to .04 inch are common, the depth again depending on temperature and time. Carbon level in the case can be controlled where advantageous.

PACK CARBURIZING consists of sealing the parts in a gas-tight container together with solid carbonaceous material and heating for eight hours or more to develop case depths in excess of .04 inch. This method is particularly suitable for producing deep cases of .06 inch and over.

With any of the above methods, the part may be quenched after the carburizing cycle without reheating, or it may be air-cooled followed by reheating to the austenitizing temperature prior to quenching. The recommended carburizing temperatures and quenching treatments published by SAE are listed on pages 74-76.

The depth of case may be varied to suit the conditions of loading in service. For simple wear applications a very thin case may suffice. Under conditions of severe loading which would tend to collapse the case, greater case depth and higher core hardness are required.

Frequently, service characteristics require that only selective areas of a part be hardened. Such selective hardening can be accomplished in various ways. The most common method is by copper plating the non-wear surfaces, or by coating them with one of several available commercial pastes, thereby allowing the carbon to penetrate only the exposed areas. A second method is by carburizing the entire part and then removing the case in the selected areas by machining or grinding. A localized hardening treatment after carburizing is another method sometimes used.

NITRIDING consists of heating at a temperature of 900 to 1150 F in an atmosphere of ammonia gas and dissociated ammonia for an extended period of time, depending on the case depth desired. A thin, very hard case results from the formation of nitrides. Special compositions containing the strong nitride-forming elements (usually aluminum, chromium, and molybdenum) are used. The major advantages of this process are that parts can be machined prior to nitriding, and that during such treatment, they exhibit desirable dimen-

sional stability with little distortion. Where required to develop core properties, parts are quenched and tempered prior to final machining. Nitrided parts have exceptional wear resistance with little tendency to gall and seize, and are therefore particularly serviceable in applications involving metal-to-metal wear. They also have high resistance to fatigue plus improved corrosion resistance.

CYANIDING involves heating in a bath of sodium cyanide to a temperature slightly above the transformation range to obtain a thin case of high hardness, followed by quenching. This results in a hard, somewhat brittle case (because of the presence of nitrides) backed by a fine-grained tough core. Parts have superior wear resistance, approaching that of a nitrided case.

CARBO-NITRIDING is similar to cyaniding except that the absorption of carbon and nitrogen is accomplished by heating in a gaseous atmosphere containing hydrocarbons and ammonia. Case depths range from .003 to .025 inch. Case composition depends on the atmosphere, temperature, time, and steel composition. Temperatures of 1425 to 1625 F are used for parts to be quenched, while lower temperatures (1200 to 1450 F) may be used where a liquid quench is not required.

FLAME HARDENING involves rapid heating with a direct high-temperature gas flame, such that the surface layer of the part is heated above the transformation range, followed by cooling at a rate which will accomplish the desired hardening. Heating and cooling cycles must be precisely controlled to attain the desired depth of hardening consistently. Steels for flame hardening are usually in the range of .30 to .60% carbon, with hardenability appropriate for the depth to be hardened and the quenchant used. Various quenching media are used, and usually sprayed on the surface at a short distance behind the heating flame. Immediate tempering is required to avoid cracking caused by residual stresses, and may be accomplished by conventional furnace tempering or flame tempering processes, depending on part size and economic considerations.

INDUCTION HARDENING. In recent years considerable quantities of steel have been heated for hardening by electrical induction. As optimum results from this type of thermal treatment involve metallurgical considerations somewhat unique for the process, an explanation of the fundamental principles and metallurgical aspects follows.

When high frequency alternating current is sent through a coil or inductor, a magnetic field is developed in the coil. If an electrical conductor, such as a steel part, is placed in this field, it will be heated by induced energy. Heating results primarily from the resistance of the part to the flow of currents created by the induced voltage (viz., eddy current losses) and also from hysteresis losses caused by the rapidly alternating magnetic field if the part is magnetic. Thus, most plain carbon and alloy steels heat most rapidly below the Curie temperature (approximately the upper critical temperature) where they are ferromagnetic, and less rapidly above this temperature.

With conventional induction-heating generators, the heat is developed primarily on the surface of the part. The total depth of heating depends upon the frequency of the alternating current passing through the coil, the rate at which heat is conducted from the surface to the interior, and the length of the heating cycle. Thus, the process is capable either of surface (or case) hardening to various controlled depths, or of through hardening. Surface hardening is normally accomplished with frequencies of 10,000 to 500,000 cycles per second using high power and short heating cycles, while lower frequencies and long heating cycles are preferred for through heating by induction.

Quenching is usually accomplished with a water spray introduced at the proper time by a quench ring or through the inductor block or coil. In some instances, however, oil quenching is successfully employed by dropping the pieces into a bath of oil after they reach the hardening temperature.

From the metallurgical standpoint, induction heating and conventional heating vary primarily in the time allowed for metallurgical reactions. Heating by induction is very rapid and zero time is normally provided at the hardening temperature prior to quenching. The very short austenitizing times which result may have a significant influence on the metallurgical results and often make it necessary to give special attention to the selection of the steel, the microstructure prior to heating, and the hardening temperature.

Plain medium carbon steels are preferred for induction surface hardening, although the free machining grades 1141 and 1144 are frequently used. Alloy steels can also be successfully induction hardened, although it is often necessary to increase the hardening temperature to provide alloy solution in steels containing carbideforming elements, e.g., 4340 and 4150. Alloy steels may be required

if a very deep case or through hardening is necessary. The steels tabulated below are typical of those which have been satisfactorily hardened by induction heating. Since steels containing higher carbon than those shown are also successfully induction hardened, the list should be considered indicative rather than inclusive.

Plain Carbon	Free Machining	Alloy	Surface Hardness after Quenching
1040	1141	4140	HRC 52 Min
		4340	
		8740	
1045	1144	4145	HRC 56 Min
		8645	
1050		4150	HRC 60 Min
		5150	
		6150	

This tabulation also provides minimum hardnesses to be expected on the surface of parts surface-hardened by induction heating and quenching. These values are considered conservative minima. While the hardness in induction heating is a function of the carbon content as in conventional heating, higher hardness values for a given carbon content have often been observed for induction surface-hardened parts. The increment of added hardness may be as much as 5 HRC points for steels of .30% carbon, and decreases with the carbon content.

Microstructures which show a fine uniform distribution of ferrite and carbide respond most rapidly to induction heating and are necessary where shallow case depths are required. Thus quenched and tempered or normalized structures provide optimum results, while annealed, hot-rolled, or spheroidized structures which may contain considerable amounts of massive free ferrite will require a longer heating cycle.

Conventional hardening temperatures can generally be used when induction heating plain carbon grades and alloy steels containing non-carbide-forming elements. With alloy steels containing carbide-forming elements such as chromium, molybdenum, and vanadium, however, the hardening temperature must be increased if the normal influence of the alloying elements is desired. Increased hardening temperatures do not increase the austenitic grain size since grain growth is inhibited by the undissolved carbides. In general,

steels heated to conventional hardening temperatures by induction show a similar or somewhat finer grain size than steels heated in the furnace for hardening.

It is, of course, essential to remove any decarburized surface by machining or grinding prior to induction hardening if maximum surface hardness is desired.

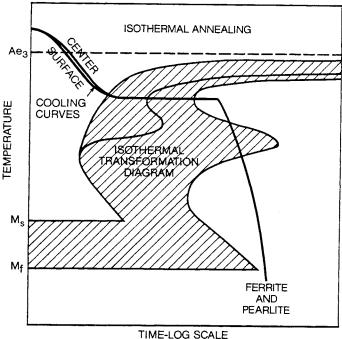
Normalizing and Annealing

Preceding discussions have been concerned with the principles and techniques of hardening and strengthening of steels by various processes which involve some form of quenching and tempering. Another important type of thermal treatment has as its purpose either a softening of the steel or the development of a more uniform microstructure prior to further processing.

NORMALIZING involves heating to a temperature of about 100 to 150 F above the upper critical temperature, followed by cooling in still air. The uniformly fine-grained pearlitic structure which normally results enhances the uniformity of mechanical properties, and for certain grades, improves machinability. Notch toughness in particular is much better than that experienced in the as-rolled condition. For large sections, and where freedom from residual stresses or lower hardness is desired, the normalizing treatment may be followed by a stress-relief treatment (see below). Normalizing is also frequently used as a conditioning treatment prior to quenching and tempering. The purpose is to facilitate austenitizing, particularly in grades containing strong carbide-forming elements.

ANNEALING consists of a heating cycle, a holding period, and a controlled cooling cycle. As discussed below, various types of annealing are used for various purposes, such as to relieve stresses, to soften the steel, to improve formability, or to develop a particular microstructure conducive to optimum machinability or cold formability.

STRESS RELIEF ANNEAL. This treatment consists of heating to a temperature approaching the lower transformation temperature (Ac₁), holding for a sufficient time to achieve temperature uniformity throughout the part, and then cooling to ambient temperature. Its usual purpose is to relieve residual stresses induced by normalizing, welding, machining, or straightening or cold deformation of any kind. A similar treatment is sometimes used to facilitate


cold-shearing of as-rolled material. If the steel has undergone a considerable amount of prior cold work, this annealing treatment will cause the ferrite in the microstructure to recrystallize; otherwise, little change in structure will result. A degree of softening and improved ductility may be experienced, depending on the temperature and time involved.

SUB-CRITICAL ANNEAL. This treatment differs from stress-relieving primarily in that it requires a longer holding period at the annealing temperature, and that the furnace charge is then slow-cooled at a controlled rate. The purpose of this type anneal is to soften the steel, usually in preparation for subsequent cold deformation. The treatment does not allow consistent control of microstructures, inasmuch as the carbide tends to spheroidize to a degree which depends on prior structure and on the temperature, time, and cooling rates involved.

SOLUTION, OR FULL ANNEAL. This treatment involves heating to a temperature above the transformation range, followed by controlled cooling to a temperature substantially below that range. A predominantly lamellar microstructure is normally obtained, with some variation dependent upon the rate of cooling through the transformation range and the degree of homogenization of the carbides prior to cooling. This treatment softens the steel, but its principal use is to improve the machinability of medium carbon steels.

SPHEROIDIZE ANNEAL. The purpose of this type of annealing is to achieve a spheroidal or globular form of the carbides, primarily to provide optimum cold forming characteristics. A spheroidized structure is also desirable for machinability in high carbon steels. Several methods are used to develop this condition:

- (1) Heating to a temperature between the upper and lower transformation temperatures and cooling very slowly in the furnace to below the transformation range.
- (2) Heating as in (1), then cooling rapidly to a temperature just below the transformation range and holding for a prolonged period (see Isothermal Anneal).
- (3) Heating to a temperature just below the Ac₁, holding for an extended length of time, then slow cooling.
- (4) Alternate repetitive heating to a temperature within, and to a temperature slightly below the transformation range.

ISOTHERMAL ANNEAL. This process makes use of the principles discussed under Isothermal Treatments (page 63) and is effective in obtaining either a lamellar or a spheroidized structure. If a lamellar pearlitic structure is desired, the work is austenitized above the upper transformation temperature, then cooled to, and held at a temperature at or above the nose of the S-curve. Transformation at the nose of the curve will be more rapid, but will result in finer pearlite and a higher hardness than transformation at higher temperatures.

To obtain a spheroidized structure, a lower austenitizing temperature is used so that some carbide remains undissolved. Cooling and transformation as for the pearlitic anneal above will result in a spheroidized structure.

By accelerating the cooling to the transformation temperature and also the cooling subsequent to transformation, appreciable time savings can be realized as compared with that required for conventional annealing practices.

ALLOY STEELS—Carburizing Grades

	Pretreatments							
SAE Number ^a	Normalize ^b	Normalize and Temper ^c	Cycle Anneaid	Carburizing ^e Temp, F	Cooling Method	Reheat Temp, F	Quenching Medium	Tempering ^f Temp, F
4012								
4023							i,	
4024							{	
4027	Yes	-	-	1650-1700	Quench in oil ^a	_	-	250-350
4028								
4032								
4118								,
4320	Yes	_	Yes	1650-1700	Quench in oil ^g Cool slowly	_ 1525-1550 ⁱ	– Oil	250-350
4419								
4413	Yes		Yes	1650-1700	Quench in oil ^g			250-350
4427	162	_	162	1030-1700	Ansucu uu ous	_	_	250-350
			-					
4615								
4617					Quench in ails	_	_	
4620	Yes	_	Yes	1650-1700	Cool slowly	1500-1550i	Oil	250-350
4621					Quench in oil	1500-1550h	Oil	
4626 4718								
4720	Yes	_	Yes	1650-1700	Quench in oil	1500-1550 ^h	Oil	250-350
4815					Quench in oils		_	
4817	_	Yes	Yes	1650-1700	Cool slowly	1475-1525 ⁱ	Oil	250-325
4820		103	103	1000 1700	Quench in oil	1475-1525h	_	200 020
5015								
5115	Yes		_	1650-1700	Quench in oils		_	250-350
5120	103			1300 1700	addition in one			200 000
6118	Yes	_	_	1650	Quench in oil ⁹	_	_	325

	i	retreatmen	its					
SAE Number ^a	Normalize ^b	Normalize and Temper ^c	Cycle Anneal ^d	Carburizing ^e Temp, F	Cooling Method	Reheat Temp, F	Quenching Medium	Tempering! Temp, F
8115 8615 8617	Yes	_	_	1650-1700	Quench in oil ⁹ Cool slowly Quench in oil	— 1550-1600 [;] 1550-1600 ^ь	ł	250-350
8620 8622 8625 8627 8720 8822	Yes	_	Yes	1650-1700	Quench in oils Cool slowly Quench in oil	 1550-1600 ⁱ 1550-1600 ^h	Oil	250-350
9310	_	Yes		1600-1700	Quench in oil Cool slowly	1450-1525 ^h 1450-1525 ⁱ	Oil Oil	250-325
94B15 94B17	Yes	_	_	1650-1700	Quench in oil ⁹	_	_	250-350

- ^a These steels are fine grain. Heat treatments are not necessarily correct for coarse grain.
- ^b Normalizing temperature should be at least as high as the carburizing temperature followed by air cooling.
- After normalizing, reheat to temperature of 1100-1200 F and hold at temperature approximately 1 hr per in. of maximum section or 4 hr minimum time.
- ^d Where cycle annealing is desired, heat to at least as high as the carburizing temperature, hold for uniformity, cool rapidly to 1000-1250 F, hold 1 to 3 hr, then air cool or furnace cool to obtain a structure suitable for machining and finish.
- e It is general practice to reduce carburizing temperatures to approximately 1550 F before quenching to minimize distortion and retained austenite. For 4800 series steels, the carburizing temperature is reduced to approximately 1500 F before quenching.
- f Temperatures higher than those shown are used in some instances where application requires.
- 9 This treatment is most commonly used and generally produces a minimum of distortion.
- h This treatment is used where the maximum grain refinement is required and/or where parts are subsequently ground on critical dimensions. A combination of good case and core properties is secured with somewhat greater distortion than is obtained by a single quench from the carburizing treatment.
- in this treatment the parts are slowly cooled, preferably under a protective atmosphere. They are then reheated and oil quenched. A tempering operation follows as required. This treatment is used when machining must be done between carburizing and hardening or when facilities for quenching from the carburizing cycle are not available. Distortion is at least equal to that obtained by a single quench from the carburizing cycle, as described in note e.

CARBON STEELS—Carburizing Grades

SAE Number	Carburizing Temp, F	Cooling Method	Reheat Temp, F	Cooling Medium	Carbo- nitriding Temp, F	Cooling Medium
1010 1015	_	_	_	_	1450-1650	Oil
1016	1650-1700	Water or Caustic			1450-1650	Oil
1018	1000 1700	Tracer or Caustic			1400 1000	- 011
1018 1019 1020	4050 4700	_				
1022 1026	1650-1700	Water or Caustic	1450	Water or Caustic ^a	1450-1650	Oil
1030						
1109	1650-1700	Water or Oil	1400-1450	Water or Caustica	_	_
1117	1650-1700	Water or Oil	1450-1600	Water or Caustica	1450-1650	Oil
1118	1650-1700	Oil	1450-1600	Oil	b	_
1513						
1518						
1522						
1524	1650-1700	Oil	1450	Oil	_b	_
1525						
1526						
1527						

NOTE: Normalizing is generally unnecessary for fulfilling either dimensional or machinability requirements of parts made from the above grades. Where dimension is of vital importance, normalizing temperatures of at least 50 F above the carburizing temperatures are sometimes required to minimize distortion.

NOTE: Tempering temperatures are usually 250-400 F, but higher temperatures may be used when permitted by the hardness specification for the finished parts.

^{#3%} sodium hydroxide.

^bThe higher manganese steels such as 1118 and the 1500 series are not usually carbonitrided. If carbonitriding is performed, care must be taken to limit the nitrogen content because high nitrogen will increase their tendency to retain austenite.

CARBON STEELS Water and Oil Hardening Grades

SAE Number	Normalizing Temp, F	Annealing Temp, F	Hardening Temp, F	Quenching Medium
1030	_	-	1575-1600	Water or Caustic
1035	_		1550-1600	Water or Caustic
1037				
1038a			1505 1575	W-4 C
1039a	-	_	1525-1575	Water or Caustic
1040a				
1042				
1043a		_	1500-1550	Water or Caustic
1045a	_	_	1300-1330	Water or Gaustic
1046a				
1050a	1600-1700	_	1500-1550	Water or Caustic
1053			1300-1330	Water or Caustic
1060	1600-1700	1400-1500	1575-1625	Oil
1074	1550-1650	1400-1500	1575-1625	Oil
1080				
1084	1550-1650	1400-1500b	1575-1625	Oilc
1085	1330-1030	1400-1300-	1070-1020	On-
1090				
1095	1550-1650	1400-1500 ^b	1575-1625	Water and Oil
1137	_		1550-1600	Oil
1141	-	1400-1500	1500-1550	Oil
1144	1600-1700	1400-1500	1500-1550	Oil
1145	_	_	1475-1500	Water or Oil
1146	_		1475-1500	Marei oi Oil
1151	1600-1700	_	1475-1500	Water or Oil
1536	1600-1700	_	1500-1550	Water or Oil
1541	1600-1700	1400-1500	1500-1550	Water or Oil
1548	4000 4700		4500 4550	0:1
1552	1600-1700	_	1500-1550	Oil
1566	1600-1700	_	1575-1625	Oil

NOTE: When tempering is required, temperature should be selected to effect desired hardness.

^aThese grades are commonly used for parts where induction hardening is employed, although all steels from 1030 up may be induction hardened.

^b Spheroidal structures are often required for machining purposes and should be cooled very slowly or be isothermally transformed to produce the desired structure.

[•] May be water or brine quenched by special techniques such as partial immersion or time quenched; otherwise, they are subject to quench cracking.

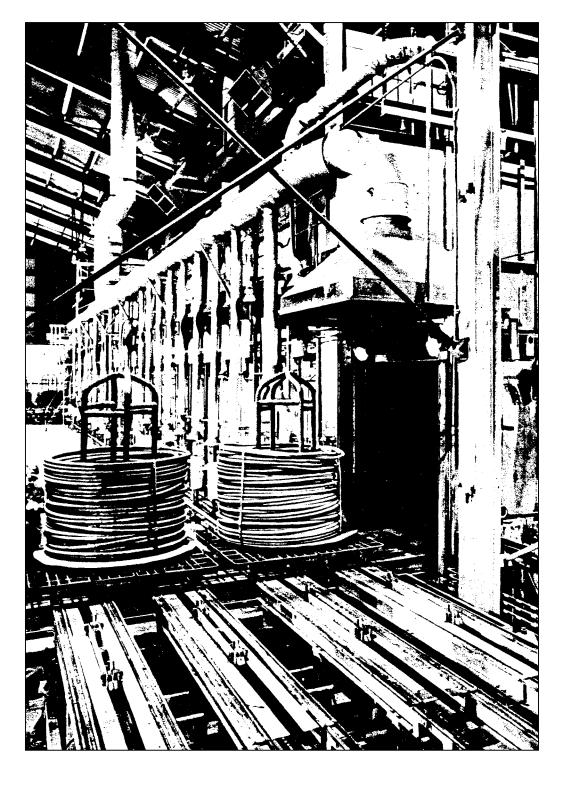
ALLOY STEELS—Directly Hardenable Grades

SAE Numbera	Normalizing Temp, F	Annealing ^d Temp, F	Hardeninge Temp, F	Quenching Medium
1330	1600-1700 ^b	1550-1650	1525-1575	Water or Oil
1335 1340 1345	1600-1700°	1550-1650	1500-1550	Oil
4037 4042		1500-1575	1525-1575	Oil
4047	_	1450-1550	1500-1575	Oil
4130	1600-1700 ^b	1450-1550	1500-1600	Water or Oil
4135 4137 4140 4142	_	1450-1550	1550-1600	Oil
4145 4147 4150	_	1450-1550	1500-1550	Oil
4161	_	1450-1550	1550-1550	Oilf
4340	1600-1700 ^b	1450-1550	1500-1550	Oil ^c
50B40 50B44 5046 50B46	1600-1700 ^b	1500-1600	1500-1550	Oil
50B50 5060 50B60	1600-1700 ^b	1500-1600	1475-1550	Oil
5130 5132	1600-1700 ^b	1450-1550	1525-1575	Water, Caustic or Oil
5135 5140 5145	1600-1700 ^b	1500-1600	1500-1550	Oil

SAE Numbera	Normalizing Temp, F	Annealing ^d Temp, F	Hardeninge Temp, F	Quenching Medium
5147 5150 5155 5160 51B60	1600-1700 ^b	1500-1600	1475-1550	Oil
50100 51100 52100	_	1350-1450	1425-1475 1500-1600	Water Oil
6150	-	1550-1650	1550-1625	Oil
81B45	1600-1700°	1550-1650	1500-1575	Oil
8630	1600-1700 ^b	1450-1550	1525-1600	Water or Oil
8637 8640	_	1500-1600	1525-1575	Oil
8642 8645 86B45 8650	_	1500-1600	1500-1575	Oil
8655 8660	-	1500-1600	1475-1550	Oil
8740	_	1500-1600	1525-1575	Oil
9254 9255 9260	_	- .	1500-1650	Oil
94B30	1600-1700 ^b	1450-1550	1550-1625	Oil

NOTE. When tempering is required, temperature should be selected to effect desired hardness. See footnotes c and f.

^aThese steels are fine grain.

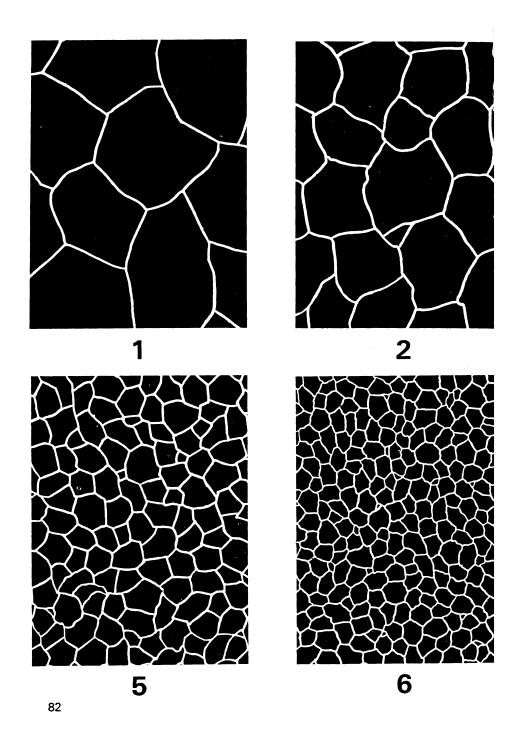

b These steels should be either normalized or annealed for optimum machinability.

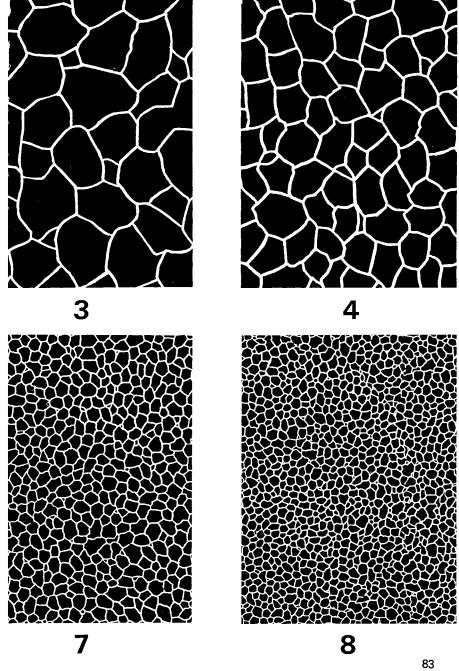
^cTemper at 1100-1225 F.

^d The specific annealing cycle is dependent upon the alloy content of the steel, the type of subsequent machining operations, and desired surface finish.

e Frequently, these steels, with the exception of 4340, 50100, 51100, and 52100, are hardened and tempered to a final machinable hardness without preliminary thermal treatment.

Temper above 700 F.

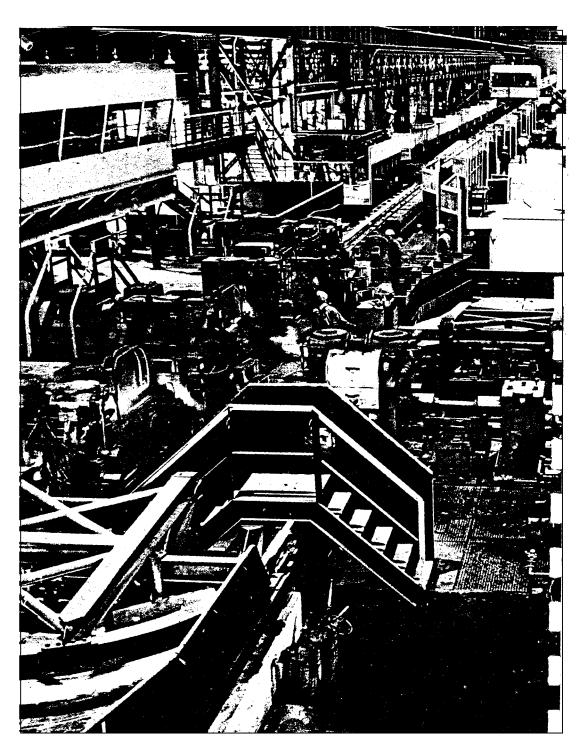

GRAIN SIZE


Grain size, as considered within the scope of this publication, is the austenitic grain size. As any carbon or alloy steel is heated to a temperature just above the upper critical temperature, it transforms to austenite of uniformly fine grain size. On heating to progressively higher temperatures, coarsening of the austenite grains eventually will occur. The temperature at which this occurs is dependent to some extent on the composition of the steel, but is influenced primarily by the type and degree of deoxidation used in the steelmaking process. Time at temperature also influences the degree of coarsening. Deoxidizers such as aluminum, and alloying elements such as vanadium, titanium, and columbium, inhibit grain growth, thereby increasing the temperature at which coarsening of the austenitic grains occurs. Aluminum is most commonly used for grain size control because of its low cost and dependability.

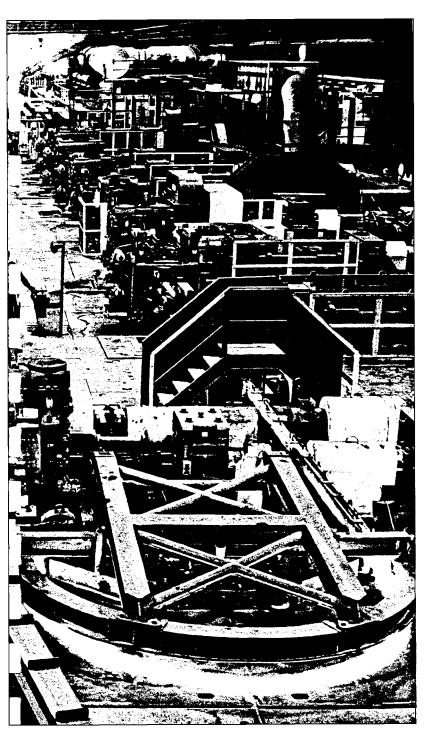
For steels used in the quenched and tempered condition, a fine grain size at the quenching temperature is almost always preferred, because fine austenitic grain size is conducive to good ductility and toughness. Coarse grain size enhances hardenability, but also increases the tendency of the steel to crack during thermal treatment.

When austenitic grain size is specified, the generally accepted method of determining it is the McQuaid-Ehn test! This test consists of carburizing a specimen at 1700 F, followed by slow cooling to develop a carbide network at the grain boundaries. The specimen is polished and etched, and then compared at 100 diameters magnification with a standard (pages 82-83). Since it is impossible to produce steels of a single grain size, a range of grain size numbers is usually reported. For specification purposes, a steel is considered fine grained if it is predominantly 5 to 8 inclusive, and coarse grained if it is predominantly 1 to 5 inclusive. These requirements are usually considered fulfilled if 70% of the grains examined fall within these ranges.

Steels which are fine grained at 1700 F will be fine grained at a lower quenching temperature. A steel which exhibits coarse grain size at 1700 F, is usually fine grained at conventional quenching temperatures, but this cannot be guaranteed. Consequently, fine grain size (McQuaid-Ehn) is usually specified for applications involving hardening by thermal treatment.



MECHANICAL PROPERTIES


of Carbon and Alloy Steels

The mechanical properties of a number of common carbon and alloy steels are given on the following pages. The data were obtained by testing single heats of the compositions indicated, and may be used as a guide in selecting grades for specific applications. However, it should be kept in mind that every grade of steel is furnished to a range of composition, and that the resultant heat-to-heat variations in the percentages of individual elements present in any grade can cause significant differences in the properties obtainable by thermal treatment. Similarly, section size and thermal treatment parameters markedly influence the properties which can be developed in any particular part. Hence, the mechanical properties given in this section should not be considered as maximum, minimum, or average values for a particular application of the grades involved.

	Page	Grade
Carbon Carburizing Grades	88	1015
	89	1020
	90	1022
	91	1117
	92	1118
Carbon Water- and Oil-Hardening Grades	94	1030
	96	1040
	100	1050
	104	1060
	106	1080
	108	1095
	112	1137
	116	1141
	118	1144
Alloy Carburizing Grades	122	4118
	124	4320
	126	4419
	128	4620
	130	4820
	132	8620
	134	E9310
Alloy Water-Hardening Grades	138	4027
	140	4130
	142	8630
Alloy Oil-Hardening Grades	146	1340
,	148	4140
	150	4340
	152	5140
	154	8740
	156	4150
	158	5150
	160	6150
	162	8650
	164	9255
	166	5160

CARBON STEEL CARBURIZING GRADES

1015

SINGLE HEAT RESULTS

	С	Mn	P	S	Si	
Grade	.13/.18	.30/.60	.040 Ma	ıx .050	Max —	Grain Size
Ladle	.15	.53	.018	.03	1 .17	6-8
	Critical Poir	nts.F: A	Acı 1390	Ac ₃ 1560	Ar ₃ 1510	Ar: 1390

SINGLE QUENCH AND TEMPER

Carburized at 1675 F for 8 hours; pot-cooled; reheated to 1425 F; water-quenched; tempered at 350 F.

1-in. Round Treated Case Depth .048 in. Case Hardness HRC 62

MASS EFFECT

	Size Round in.	Tensile Strength psi	Yield Point psi	Elongation % 2 in.	Reduction of Area, %	Hardness HB
Annealed (Heated to 1	600 F, furnace-	cooled 30 F	per hour to	1340 F, cod	oled in air.)
	1	56,000	41,250	37.0	69.7	111
Normalized	d (Heated to	1700 F, cooled	d in air.)			
	1/2	63,250	48,000	38.6	71.0	126
	1	61,500	47,000	37.0	69.6	121
	2	60,000	44,500	37.5	69.2	116
	4	59,250	41,800	36.5	67.8	116
Mock-Carb	ourized at 1 tempered a	675 F for 8 hou at 350 F.	rs; reheated	to 1425 F	; quenched	l in water;
	1/2	106,250	60,000	15.0	32.9	217
	1	75,500	44,000	30.0	69.0	156
	2	70,750	41,375	32.0	70.4	131

39,000

30.5

69.5

121

As-quenched Hardness (water)

4

Size Round	Surface	½ Radius	Center
1/2	HRC 36.5	HRC 23	HRC 22
1	HRB 99	HRB 91	HRB 90
2	HRB 98	HRB 84	HRB 82
4	HRB 97	HRB 80	HRB 78

67,250

SINGLE HEAT RESULTS

	С	Mn	P	S	Si	
Grade	.18/.23	.30/.60	.040 Max	.050 Max		Grain Size
Ladle	.19	.48	.012	.022	.18	6-8
	Critical Poin	nts.F: Ac	1350 Ac-	1540 Ar	1470	Ar. 1340

SINGLE QUENCH AND TEMPER

Carburized at 1675 F for 8 hours; pot-cooled; reheated to 1425 F; water-quenched; tempered at 350 F.

1-in. Round Treated Case Depth .046 in. Case Hardness HRC 62

MASS EFFECT

	Size Round in.	Tensile Strength psi	Yield Point psi	Elongation % 2 in.	Reduction of Area, %	Hardness HB
As-Rolled	1	68,500	55,750	32.0	66.5	137
Annealed (Heated to 1	600 F, furnace-o	cooled 30 F	per hour to	1290 F, cod	oled in air.)
	1	57,250	42,750	36.5	66.0	111
Normalized	I (Heated to	1700 F, cooled	d in air.)			
	1/2	64,500	50,250	39.3	69.1	131
	1	64,000	50,250	35.8	67.9	131
	2	63,500	46,250	35.5	65.5	126
	4	60,000	40,750	36.0	66.6	121
Mock-Carb	ourized at 10 tempered a	675 F for 8 hou at 350 F.	rs; reheated	l to 1425 F	; quenched	l in water;
	1/2	129,000	72,000	11.4	29.4	255
	1	87,000	54,000	23.0	64.2	179
	2	75,500	43,750	31.3	67.9	156
	4	71,250	42,000	33.0	67.6	143

Size Round	Surface	1/2 Radius	Center
1/2	HRC 40.5	HRC 30	HRC 28
1	HRC 29.5	HRB 96	HRB 93
2	HRB 95	HRB 85	HRB 83
4	HRB 94	HRB 78	HRB 77

1022

SINGLE HEAT RESULTS

	С	Mn	P	S	Si	
Grade	.18/.23	.70/1.00	.040 Max	.050 Max		Grain Size
Ladle	.22	.82	.016	.023	.20	6-8
	Critical Poi	nts, F: Ac	1360 A	c₃ 1530 Ai	3 1440	Ar ₁ 1300

SINGLE QUENCH AND TEMPER

Carburized at 1675 F for 8 hours; pot-cooled; reheated to 1425 F; water-quenched; tempered at 350 F.

1-in. Round Treated Case Depth .046 in. Case Hardness HRC 62

MASS EFFECT

	Size Round in.	Tensile Strength psi	Yield Point psi	Elongation % 2 in.	Reduction of Area, %	Hardness HB
As-Rolled	1	70,250	52,250	33.0	65.2	137
Annealed (Heated to 1	600 F, furnace-o	cooled 30 F	per hour to	1250 F, cod	oled in air.)
	1	65,250	46,000	35.0	63.6	137
Normalized	(Heated to	1700 F, cooled	d in air.)			
	1/2	70,500	53,000	35.7	68.3	143
	1	70,000	52,000	34.0	67.5	143
	2	68,750	48,000	34.0	66.6	137
	4	67,250	45,000	33.8	63.9	131
Mock-Carburized at 1675 F for 8 hours; reheated to 1425 F; quenched in water; tempered at 350 F.						
	1/2	135,000	75,000	13.6	24.3	262
	1	89,000	55,000	25.5	57.3	179
	2	82,000	50,250	30.0	69.6	163
	4	74,000	42,500	32.5	71.6	149

Size Round	Surface	½ Radius	Center
1/2	HRC 45	HRC 29	HRC 27
1	HRC 41	HRB 95	HRB 92
2	HRC 38	HRB 88	HRB 84
4	HRC 34	HRB 84	HRB 81

SINGLE HEAT RESULTS

	С	Mn	Р	S	Si	
Grade	.14/.20	1.00/1.30	.040 Max	.08/.13	_	Grain Size
Ladle	.19	1.10	.015	.084	.11	2-4
(Critical Poi	nts. F: Ac ₁ 1	1345 Ac ₁ 15	540 Ar ₃ 1	450	Ar. 1340

SINGLE QUENCH AND TEMPER

Carburized at 1700 F for 8 hours; pot-cooled; reheated to 1450 F; water-quenched; tempered at 350 F.

1-in. Round Treated Case Depth .045 in. Case Hardness HRC 65

MASS EFFECT

	Size Round in.	Tensile Strength psi	Yield Point psi	Elongation % 2 in.	Reduction of Area, %	Hardness HB
As-Rolled	1	69,750	49,500	33.5	61.1	149
Annealed (Heated to 1	575 F, furnace-	cooled 30 F	per hour to	1290 F, cod	oled in air.)
	1	62,250	40,500	32.8	58.0	121
Normalized	d (Heated to	1650 F, coole	d in air.)			
	1/2	69,750	45,000	34.3	61.0	143
	1	67,750	44,000	33.5 .	63.8	137
	2	67,000	41,500	33.5	64.7	137
	4	63,750	35,000	34.3	64.7	126
Mock-Cark	ourized at 1	700 F for 8 hou	ırs; reheated	to 1450 F	; quenched	in water;
	tempered a	at 350 F.				
	1/2	124,750	66,500	9.7	18.4	235
	1	89,500	50,500	22.3	48.8	183
	2	78,000	47,750	26.3	65.7	156
	4	74,750	42,750	27.3	62.6	149

Size Round	Surface	½ Radius	Center
1/2	HRC 42	HRC 34.5	HRC 29.5
1	HRC 37	HRB 96	HRB 93
2	HRC 33	HRB 90	HRB 86
4	HRC 32	HRB 83	HRB 81

1118

SINGLE HEAT RESULTS

	С	Mn	P	S	Si	
Grade	.14/.20	1.30/1.60	.040 Max	.08/.13		Grain Size
Ladle	.20	1.34	.017	.08	.09	90% 3-5 10% 2
	Critical Poir	nts, F: Ac, 1	330 Ac₃ 15	515 Ar₃ 1	385	Ar ₁ 1175

SINGLE QUENCH AND TEMPER

Carburized at 1700 F for 8 hours; pot-cooled; reheated to 1450 F; water-quenched; tempered at 350 F.

1-in. Round Treated Case Depth .065 in. Case Hardness HRC 61

MASS EFFECT

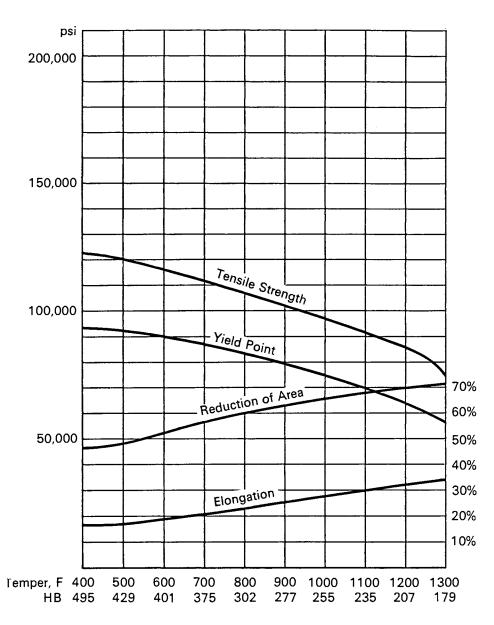
	Size Round in.	Tensile Strength psi	Yield Point psi	Elongation % 2 in.	Reduction of Area, %	Hardness HB		
As-Rolled	1	70,500	51,500	32.3	63.0	1,43		
Annealed (Annealed (Heated to 1450 F, furnace-cooled 30 F per hour to 1125 F, cooled in air.)							
	1	65,250	41,250	34.5	66.8	131		
Normalized	(Heated to	1700 F, cooled	d in air.)					
	1/2	72,750	47,800	33.3	62.8	156		
	1	69,250	46,250	33.5	65.9	143		
	2	68,500	43,250	33.0	67.7	137		
	4	66,250	37,750	34.0	67.4	131		
Mock-Carb		700 F for 8 hou	rs; reheated	to 1450 F	; quenched	l in water;		
	tempered a							
	1/2	144,500	90,000	13.2	30.8	285		
	1	102,500	59,250	19.0	48.9	207		
	2	82,250	47,875	27.3	6 5.5	167		
	4	77,000	45,000	31.0	67.4	156		

Size Round	Surface	½ Radius	Center
1/2	HRC 43	HRC 36	HRC 33
1	HRC 36	HRB 99	HRB 96.5
2	HRC 34	HRB 91	HRB 87
4	HRC 32	HRB 84	HRB 82

CARBON STEEL WATER- AND OIL-HARDENING GRADES

It will be noted in the properties charts that the hardness values listed are frequently incompatible with the tensile strength shown for the same tempering temperatures. These carbon steels are comparatively shallow hardening; and hardness tests made on the surface of a quenched and tempered bar will not be equivalent to the tensile strength obtained on a .505-in. specimen	94 96 100 104 106 108 112 116	1030 1040 1050 1060 1080 1095 1137 1141
machined from the center of the same bar.	118	1144

SINGLE HEAT RESULTS


	С	Mn	Р	S	Si	
Grade	.28/.34	.60/.90	.040 Max	.050 Max		Grain Size
Ladle	.31	.65	.023	.026	.14	5-7
(ritical Poir	nts F: Ac	, 1350 Ac	. 1485 Ar	1395	Ar. 1250

MASS EFFECT

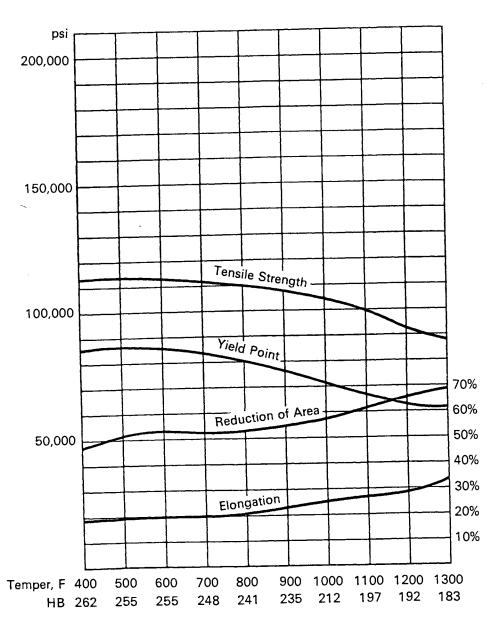
	Size Round in.	Tensile Strength psi	Yield Point psi	Elongation % 2 in.	Reduction of Area, %	Hardness HB
Annealed (Heated to 1	550 F, furnace-o	cooled 20 F	per hour to	1200 F, cod	oled in air.)
	1	67,250	49,500	31.2	57.9	126
Normalized	(Heated to	1700 F, cooled	d in air.)			
	1/2	77,500	50,000	32.1	61.1	156
	1	75,500	50,000	32.0	60.8	149
	2	74,000	49,500	29.5	58.9	137
	4	72,500	47,250	29.7	56.2	137
Water-que	nched from	1600 F, temper	ed at 1000	F.		
	1/2	91,500	75,000	28.2	58.0	187
	1	88,000	68,500	28.0	68.6	179
	2	86,500	63,750	28.2	65.8	170
	4	80,750	54,750	32.0	68.2	163
Water-que	nched from	1600 F, temper	ed at 1100	F.		
	1/2	88,500	64,000	28.9	69.7	179
	1	85,250	63,000	29.0	70.8	170
	2	83,750	57,250	29.0	69.1	167
	4	80,500	54,500	32.0	68.5	163
Water-que	nched from	1600 F, temper	ed at 1200	F.		
	1/2	85,500	62,000	29.9	70.5	174
	1	84,500	61,500	28.5	71.4	170
	2	80,000	56,750	30.2	70.9	156
	4	74,500	49,500	34.2	71.0	149

Size Round	Surface	½ Radius	Center
1/2	HRC 50	HRC 50	HRC 23
1	HRC 46	HRC 23	HRC 21
2	HRC 30	HRB 93	HRB 90
4	HRB 97	HRB 88	HRB 85

Treatment: Normalized at 1700 F; reheated to 1600 F; quenched in water, 1-in. Round Treated; .505-in. Round Tested. As-quenched HB 514.

SINGLE HEAT RESULTS

	С	M	n	₽	S	Si	C:-
Grade	.37/.44	.60/.	90 .0	40 Max	.050 Max	_	Grain Size
Ladle	.39	.71		.019	.036	.15	5-7
Cı	ritical Point	s. F:	Ac ₁ 1340	Ac ₃ 14	45 Ar ₃ 13	50 Ar ₁	1250


MASS EFFECT

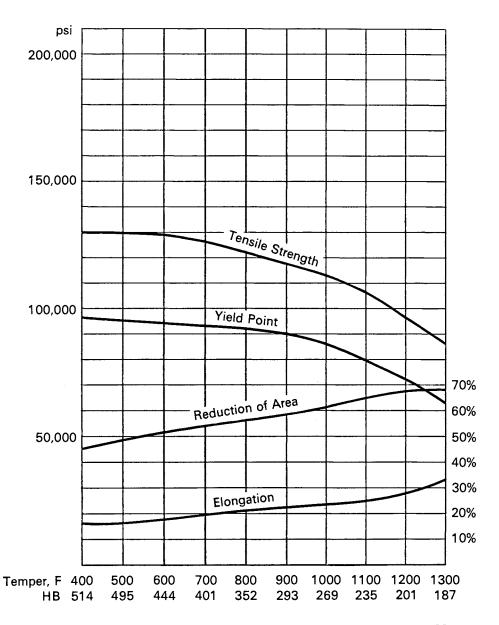
	Size Round in.	Tensile Strength psi	Yield Point psi	Elongation % 2 in.	Reduction of Area, %	Hardness HB		
Annealed (Annealed (Heated to 1450 F, furnace-cooled 20 F per hour to 1200 F, cooled in air.)							
	1	75,250	51,250	30.2	57.2	149		
Normalized	(Heated to	1650 F, cooled	d in air.)					
	1/2	88,250	58,500	30.0	56.5	183		
	1	85,500	54,250	28.0	54.9	170		
	2	84,250	53,000	28.0	53.3	167		
	4	83,500	49,250	27.0	51.8	167		
Oil-quench	ed from 15	75 F, tempered	at 1000 F.					
	1/2	104,750	72,500	27.0	62.0	217		
	1	96,250	68,000	26.5	61.1	197		
	2	92,250	59,750	27.0	59.7	187		
	4	90,000	57,500	27.0	60.3	179		
Oil-quench	ed from 15	75 F, tempered	at 1100 F.					
	1/2	100,500	69,500	27.0	65.2	207		
	1	91,500	64,250	28.2	63.5	187		
	2	86,750	56,875	28.0	62.5	174		
	4	82,750	52,250	30.0	61.6	170		
Oil-quench	ed from 15	75 F, tempered	at 1200 F.					
	1/2	95,000	66,625	28.9	65.4	197		
	1	85,250	60,250	30.0	67.4	170		
	2	82,500	54,500	31.0	66.4	167		
	4	78,750	50,000	31.2	64.5	156		

As-quenched Hardness (oil)

Size Round	Surface	½ Radius	Center
1/2	HRC 28	HRC 22	HRC 21
1	HRC 23	HRC 21	HRC 18
2	HRB 93	HRB 92	HRB 91
4	HRB 91	HRB 91	HRB 89

Treatment: Normalized at 1650 F; reheated to 1575 F; quenched in oil. 1-in. Round Treated; .505-in. Round Tested. As-quenched HB 269.

SINGLE HEAT RESULTS


	С	Mn	P	S	Si	
Grade	.37/.44	.60/.90	.040 Max	.050 Ma	· –	Grain Size
Ladle	.39	.71	.019	.036	.15	5-7
C	ritical Poir	nts. F: Ad	, 1340 Ac	1445	Ar ₃ 1350	Ar. 1250

MASS EFFECT

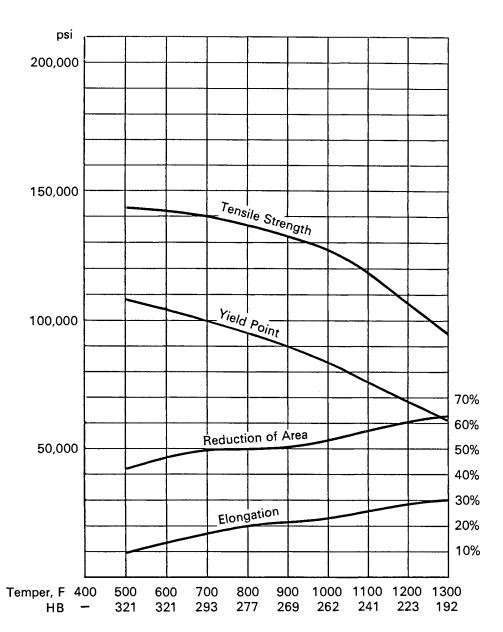
	Size Round in.	Tensile Strength psi	Yield Point psi	Elongation % 2 in.	Reduction of Area, %	Hardness HB		
Water-quenched from 1550 F, tempered at 1000 F.								
	1/2	109,000	81,500	23.8	61.5	223		
	1	107,750	78,500	23.2	62.6	217		
	2	101,750	69,500	24.7	63.6	207		
	4	99,000	63,826	24.7	60.2	201		
Water-que	nched from	1550 F, temper	ed at 1100	F.				
	1/2	101,250	71,000	26.4	65.2	212		
	1	100,000	69,500	26.0	65.0	207		
	2	95,000	68,000	29.0	69.2	197		
	4	94,250	59,125	27.0	63.4	192		
Water-que	nched from	1550 F, temper	ed at 1200	F.				
	1/2	96,000	69,000	27.7	66.6	201		
	1	93,500	68,000	27.0	67.9	197		
	2	89,000	59,875	28.7	69.0	183		
	4	85,000	54,750	30.2	67.2	170		

Size Round	Surface	1/2 Radius	Center
1/2	HRC 54	HRC 53	HRC 53
1	HRC 50	HRC 22	HRC 18
2	HRC 50	HRB 97	HRB 95
4	HRB 98	HRB 96	HRB 95

Treatment: Normalized at 1650 F; reheated to 1550 F; quenched in water. 1-in. Round Treated; .505-in. Round Tested. As-quenched HB 534.

SINGLE HEAT RESULTS

	С	Mn	P	S	Si	
- Grade	.48/.55	.60/.90	.040 Max	.050 Ма	іх —	Grain Size
Ladie	.54	.69	.012	.030	.19	5-7
(Critical Poir	nts. F: Ac	1340 A	\c₁ 1420	Ar ₃ 1320	Ar. 1250


MASS EFFECT

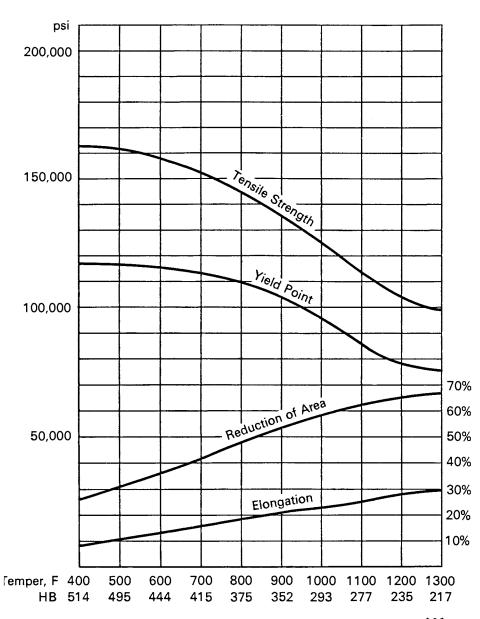
	Size Round in.	Tensile Strength psi	Yield Point psi	Elongation % 2 in.	Reduction of Area, %	Hardness HB
Annealed (Heated to 1	450 F, furnace-o	cooled 20 F	per hour to	1200 F, cod	oled in air.)
·	1	92,250	53,000	23.7	39.9	187
Normalized	(Heated to	1650 F, cooled	d in air.)			
	1/2	111,500	62,500	21.5	45.1	223
	1	108,500	62,000	20.0	39.4	217
	2	106,250	58,325	20.0	38.8	212
	4	100,000	56,000	21.7	41.6	201
Oil-quench	ed from 15	50 F, tempered	at 1000 F.			
	1/2	132,500	87,500	20.7	52.9	262
	1	123,500	76,000	20.2	53.3	248
	2	122,500	74,875	19.7	51.4	248
	4	121,000	69,000	19.7	48.0	241
Oil-quench	ed from 15	50 F, tempered	at 1100 F.			
	1/2	122,000	81,000	22.8	58.1	248
	1	114,000	70,500	23.5	57.6	223
	2	112,000	68,000	23.0	55.6	223
	4	101,000	58,750	25.2	54.5	207
Oil-quench	ed from 15	50 F, tempered	at 1200 F.			
	1/2	112,500	74,000	24.6	61.8	229
	1	106,000	64,250	24.7	60.5	217
	2	105,000	64,000	25.0	59.1	217
	4	96,750	55,750	25.5	56.6	197

As-quenched Hardness (oil)

Size Round	Surface	1/2 Radius	Center
1/2	HRC 57	HRC 37	HRC 34
1	HRC 33	HRC 30	HRC 26
2	HRC 27	HRC 25	HRC 21
4	HRB 98	HRB 95	HRB 91

Treatment: Normalized at 1650 F; reheated to 1550 F; quenched in oil. 1-in. Round Treated; .505-in. Round Tested. As-quenched HB 321.

SINGLE HEAT RESULTS


	С	Mn	P	S	Si	
- Grade	.48/.55	.60/.90	.040 Max	.050 Max	_	~ Grain Size
Ladle	.54	.69	.012	.030	.19	5-7
C	ritical Poir	nts.F: Ad	1340 Ad	3 1420 A	r₁ 1320	Ar ₁ 1250

MASS EFFECT

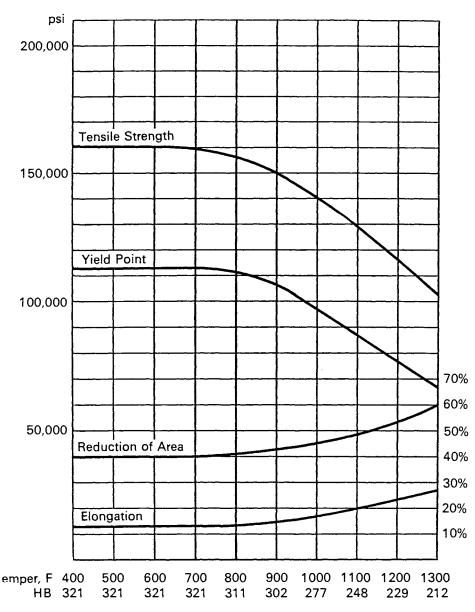
	Size Round in.	Tensile Strength psi	Yield Point psi	Elongation % 2 in.	Reduction of Area, %	Hardness HB	
Water-quenched from 1525 F, tempered at 1000 F.							
	1/2	134,000	99,000	20.0	54.4	269	
	1	131,250	92,250	20.0	55.2	262	
	2	129,500	84,125	20.7	56.6	255	
	4	122,750	78,250	21.5	55.3	248	
Water-que	Water-quenched from 1525 F, tempered at 1100 F.						
	1/2	119,000	88,000	21.7	59.9	241	
	1	118,000	80,000	22.5	59.9	241	
	2	117,250	78,750	23.0	61.0	235	
	4	112,250	68,250	23.7	55.5	229	
Water-quenched from 1525 F, tempered at 1200 F.							
	1/2	110,000	86,000	24.8	60.6	229	
	1	109,000	76,500	23.7	61.2	229	
	2	107,750	68,500	24.7	61.0	223	
	4	104,500	65,250	25.2	60.8	217	

Size Round	Surface	1/2 Radius	Center
1/2	HRC 64	HRC 59	HRC 57
1	HRC 60	HRC 35	HRC 33
2	HRC 50	HRC 32	HRC 26
4	HRC 33	HRC 27	HRC 20

Treatment: Normalized at 1650 F; reheated to 1525 F; quenched in water. 1-in. Round Treated; .505-in. Round Tested. As-quenched HB 601.

SINGLE HEAT RESULTS

	С	Mn	P	S	Si	
Grade	.55/.65	.60/.90	.040 Max	.050 мах	-	Grain Size
Ladle	.60	.66	.016	.046	.17	90% 5-7 10% 1-3
-	ritical Poin	to E. A.	- 1355 A	o 1400 /	r 1300	Ar 1250


MASS EFFECT

	Round Te in.	ensile Strength psi	Yield Point psi	Elongation % 2 in.	Reduction of Area, %	Hardness HB	
Annealed (Heated to 1450 F, furnace-cooled 20 F per hour to 1200 F, cooled in air.)							
	1	90,750	54,000	22.5	38.2	179	
Normalized (He	ated to 1	650 F, cooled	d in air.)				
	1/2	113,000	62,000	20.4	40.6	229	
	1	112,500	61,000	18.0	37.2	229	
	2	110,000	57,500	17.7	34.0	223	
	4	108,250	51,250	18.0	31.3	223	
Oil-quenched fr	om 1550	F, tempered	at 900 F.				
	1/2	149,000	98,250	15.1	46.0	302	
	1	145,500	93,000	16.2	44.0	293	
	2	142,750	89,500	16.5	46.2	285	
	4	134,750	75,250	18.2	44.8	269	
Oil-quenched from	om 1550	F, tempered	at 1000 F.				
	1/2	139,500	92,000	19.6	52.1	277	
	1	136,500	85,750	17.7	48.0	269	
	2	133,000	79,250	18.5	50.3	262	
	4	124,500	66,250	20.0	48.0	248	
Oil-quenched fr	Oil-quenched from 1550 F, tempered at 1100 F.						
	1/2	131,500	82,500	20.7	53.5	262	
	1	127,750	79,000	20.0	51.7	255	
	2	125,250	76,500	20.2	53.3	248	
	4	118,750	62,000	21.5	49.4	241	

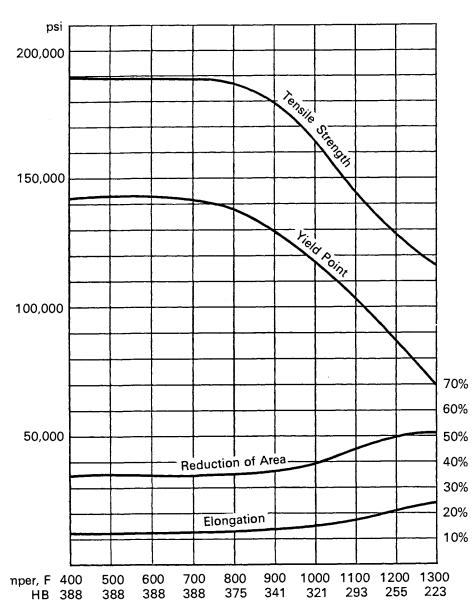
As-quenched Hardness (oil)

Size Round	Surface	½ Radius	Center
1/2	HRC 59	HRC 37	HRC 35
1	HRC 34	HRC 32	HRC 30
2	HRC 30.5	HRC 27.5	HRC 25
4	HRC 29	HRC 26	HRC 24

Treatment: Normalized at 1650 F; reheated to 1550 F; quenched in oil. 1-in. Round Treated; .505-in. Round Tested. As-quenched HB 321.

SINGLE HEAT RESULTS

	С	Mn	P	S	Si	
- Grade	.75/.88	.60/.90	.040 Max	.050 Max	, –	Grain Size
Ladle	.85	.76	.012	.027	.13	80% 5-7 20% 1-4
(Critical Poir	nts Fr Ac	. 1350 A	Ac. 1370 A	Ar₁ 1280	Ar ₁ 1250


MASS EFFECT

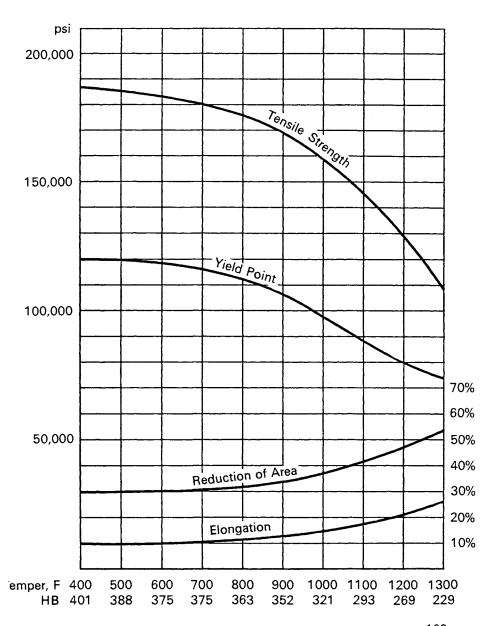
Siz	e Round T in.	ensile Strength psi	Yield Point psi	Elongation % 2 in.	Reduction of Area, %	Hardness HB
Annealed (Heated to 1450 F, furnace-cooled 20 F per hour to 1200 F, cooled in air.)						
	1	89,250	54,500	24.7	45.0	174
Normalized (H	leated to	1650 F, cooled	d in air.)			
	1/2	150,500	80,500	12.4	27.7	293
	1	146,500	76,000	11.0	20.6	293
	2	141,000	70,000	10.7	17.0	285
	4	134,750	64,500	10.7	15.5	269
Oil-quenched	from 150	0 F, tempered	at 900 F.			
	1/2	184,000	125,500	12.1	34.4	363
	1	181,500	112,500	13.0	35.8	352
	2	180,000	110,000	12.7	37.3	352
	4	171,250	104,000	11.7	28.6	341
Oil-quenched	from 150	0 F, tempered	at 1000 F.			
	1/2	169,000	121,500	15.0	38.6	341
	1	166,000	103,500	15.0	37.6	331
	2	163,500	102,625	15.2	38.0	321
	4	157,000	89,750	11.5	24.4	311
Oil-quenched from 1500 F, tempered at 1100 F.						
	1/2	152,000	107,000	17.0	43.6	302
	1	150,000	97,000	16.5	40.3	302
	2	140,250	87,500	17.7	42.2	277
	4	134,500	75,000	15.7	33.1	269

As-quenched Hardness (oil)

Size Round	Surface	½ Radius	Center
1/2	HRC 60	HRC 43	HRC 40
1	HRC 45	HRC 42	HRC 39
2	HRC 43	HRC 40	HRC 37
4	HRC 39	HRC 37	HRC 32

Treatment: Normalized at 1650 F; reheated to 1500 F; quenched in oil. 1-in. Round Treated; .505-in. Round Tested. As-quenched HB 388.

SINGLE HEAT RESULTS


	С	Mn	Р	S	Si	
Grade	.90/1.03	.30/.50	.040 Max	.050 Ма	ıx —	Grain Size
Ladle	.96	.40	.012	.029	.20	50% 5-7 50% 1-4
	Critical Point	s F·	Ac. 1350	Ac. 1365	Ar. 1320	Ar. 1265

MASS EFFECT

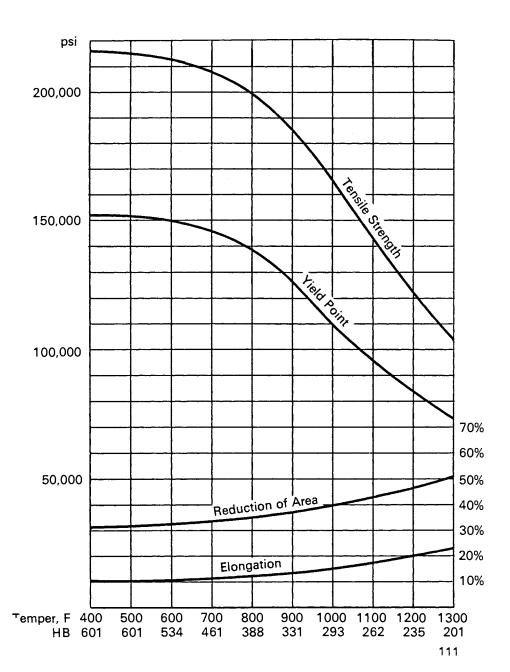
	Size Round in.	Tensile Strength psi	Yield Point psi	Elongation % 2 in.	Reduction of Area, %	Hardness HB
Annealed (Heated to 1	450 F, furnace-	cooled 20 F	per hour to	1215 F, cod	oled in air.)
	1	95,250	55,000	13.0	20.6	192
Normalized	(Heated to	1650 F, coole	d in air.)			
	1/2	151,000	80,500	12.3	27.7	302
	1	147,000	72,500	9.5	13.5	293
	2	132,500	58,000	9.2	13.4	269
	4	128,250	57,250	10.0	13.9	255
Oil-quench	ed from 14	75 F, tempered	at 900 F.			
	1/2	184,000	116,000	12.8	35.5	363
	1	175,750	102,250	10.0	23.4	352
	2	167,750	98,250	12.0	29.8	331
	4	165,000	93,000	12.2	17.3	331
Oil-quench	ed from 14	75 F, tempered	at 1000 F.			
	1/2	166,500	101,500	15.7	40.0	331
	1	159,750	95,250	13.2	32.4	321
	2	151,000	92,500	13.7	31.4	311
	4	148,000	80,000	11.7	22.1	302
Oil-quench	ed from 14	75 F, tempered	at 1100 F.			
	1/2	142,000	87,000	17.4	42.8	293
	1	139,750	79,000	17.2	38.8	277
	2	134,500	77,250	18.7	43.4	269
	4	130,000	65,750	17.2	34.4	262

Size Round	Surface	½ Radius	Center
1/2	HRC 60	HRC 44	HRC 41
1	HRC 46	HRC 42	HRC 40
2	HRC 43	HRC 40	HRC 37
4	HRC 40	HRC 37	HRC 30

Treatment: Normalized at 1650 F; reheated to 1475 F; quenched in oil. 1-in. Round Treated; .505-in. Round Tested. As-quenched HB 401.

SINGLE HEAT RESULTS

	С	Mn	P	S	Si	
Grade	.90/1.03	.30/.50	.040 Max	.050 Max	· —	Grain Size
Ladle	.96	.40	.012	.029	.20	50% 5-7 50% 1-4
,	Pritical Bains	. E. A	a 1350 A	1265	۱۰ 1320	۸، 1265


MASS EFFECT

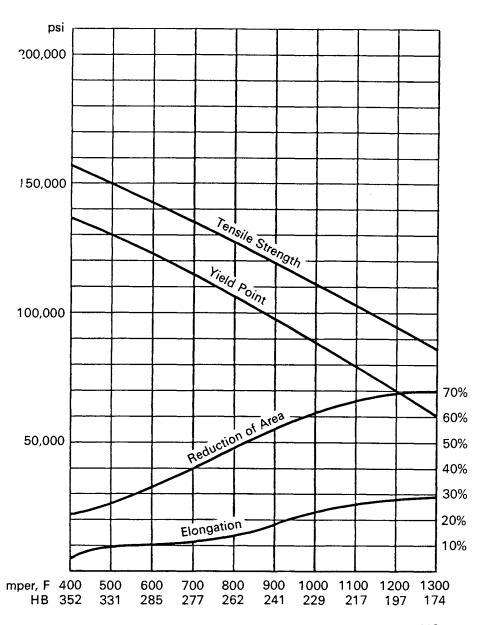
	Size Round in.	Tensile Strength psi	Yield Point psi	Elongation % 2 in.	Reduction of Area, %	Hardness HB			
Water-quenched from 1450 F, tempered at 900 F.									
	1/2	191,500	135,500	12.3	31.7	375			
	1	182,000	121,000	13.0	37.3	363			
	2	179,750	113,000	12.7	33.8	352			
	4	167,250	94,500	12.5	31.4	331			
Water-que	nched from	1450 F, temper	ed at 1000 i	F.					
	1/2	172,000	111,000	12.4	44.1	321			
	1	165,000	102,500	16.0	41.4	311			
	2	154,750	98,500	15.7	39.1	302			
	4	150,000	81,000	15.7	35.3	285			
Water-quenched from 1450 F, tempered at 1100 F.									
	1/2	144,000	99,000	17.2	44.9	293			
	1	143,000	96,500	16.7	43.7	293			
	2	140,000	90,000	17.5	43.6	285			
	4	131,250	78,000	18.7	41.1	262			

As-quenched Hardness (water)

Size Round	Surface	½ Radius	Center
1/2	HRC 65	HRC 55	HRC 48
1	HRC 64	HRC 46	HRC 44
2	HRC 63	HRC 43	HRC 40
4	HRC 63	HRC 38	HRC 30

Treatment: Normalized at 1650 F; reheated to 1450 F; quenched in water. 1-in. Round Treated; .505-in. Round Tested. As-quenched HB 601.

SINGLE HEAT RESULTS


	С	Mn	P	S	Si	
Grade	.32/.39	1.35/1.65	.040 Мах	.08/.13	_	Grain Size
Ladle	.37	1.40	.015	.08	.17	1-4
0	Critical Poir	nts. F: Ac.	1330 Ac ₂ 1	1450 Ara	1310	Ar. 1180

MASS EFFECT

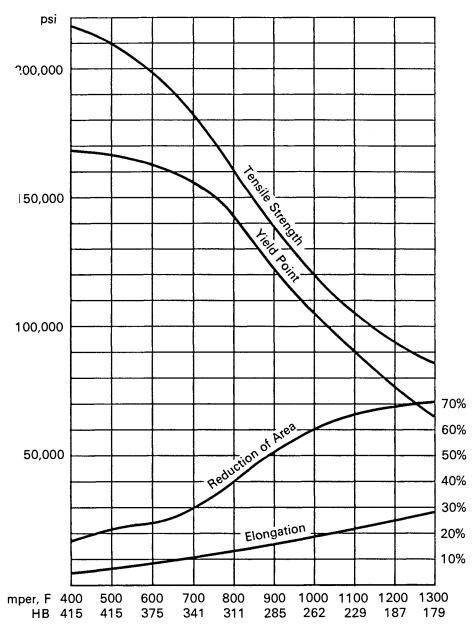
	Size Round in.	Tensile Strength psi	Yield Point psi	Elongation % 2 in.	Reduction of Area, %	Hardness HB
Annealed (Heated to 1	450 F, furnace-	cooled 20 F	per hour to	1130 F, cod	oled in air.)
	1	84,750	50,000	26.8	53.9	174
Normalized	d (Heated to	o 1650 F, coole	d in air.)			
	1/2	98,000	58,500	25.0	58.5	201
	1	97,000	57,500	22.5	48.5	197
	2	96,000	49,000	21.8	51.6	197
	4	94,000	48,000	23.3	51.0	192
Oil-quench	ed from 15	75 F, tempered	at 1000 F.			
	1/2	127,500	100,000	18.2	55.8	255
	1	108,000	75,750	21.3	56.0	223
	2	105,000	63,000	23.0	56.2	217
	4	100,500	58,750	22.3	55.5	201
Oil-quench	ed from 15	75 F, tempered	at 1100 F.			
	1/2	112,500	90,000	21.8	61.0	229
	1	100,750	68,750	23.5	60.1	207
	2	98,000	61,500	23.0	57.8	207
	4	95,250	57,000	24.5	59.5	192
Oil-quench	ned from 15	75 F, tempered	at 1200 F.			
	1/2	104,000	80,500	24.6	63.6	217
	1	97,750	68,750	23.5	60.8	201
	2	97,000	57,250	25.0	64.1	197
	4	94,500	56,000	24.0	61.1	192

Size Round	Surface	½ Radius	Center
1/2	HRC 48	HRC 43	HRC 42
1	HRC 34	HRC 28	HRC 23
2	HRC 28	HRC 22	HRC 18
4	HRC 21	HRC 18	HRC 16

Treatment: Normalized at 1650 F; reheated to 1575 F; quenched in oil. 1-in. Round Treated; .505-in. Round Tested. As-quenched HB 363.

SINGLE HEAT RESULTS

	С	Mn	P	S	Si	
Grade	.32/.39	1.35/1.65	.040 Max	.08/.13		Grain Size
Ladle	.37	1.40	.015	.08	.17	1-4
(Critical Poir	nts. F: Acı	1330 Ac ₁ 1	1450 Ara	1310	Ar. 1180


MASS EFFECT

	Size Round in.	Tensile Strength psi	Yield Point psi	Elongation % 2 in.	Reduction of Area, %	Hardness HB				
Water-quenched from 1550 F, tempered at 1000 F.										
	1/2	129,500	112,000	17.1	51.3	262				
	1	122,000	98,000	16.9	51.2	248				
	2	110,000	71,250	20.8	56.1	229				
	4	108,000	69,000	20.3	52.1	223				
Water-quer	nched from	1550 F, temper	ed at 1100	F.						
	1/2	112,500	95,000	21.4	57.6	229				
	1	107,750	87,750	21.0	59.2	223				
	2	105,250	76,000	22.0	61.7	217				
	4	97,750	61,250	23.5	60.9	201				
Water-quenched from 1550 F, tempered at 1200 F.										
	1/2	105,000	89,000	23.9	61.2	223				
	1	102,500	81,750	22.3	58.8	217				
	2	97,500	67,000	24.0	64.1	201				
	4	95,500	60,000	24.0	63.5	197				

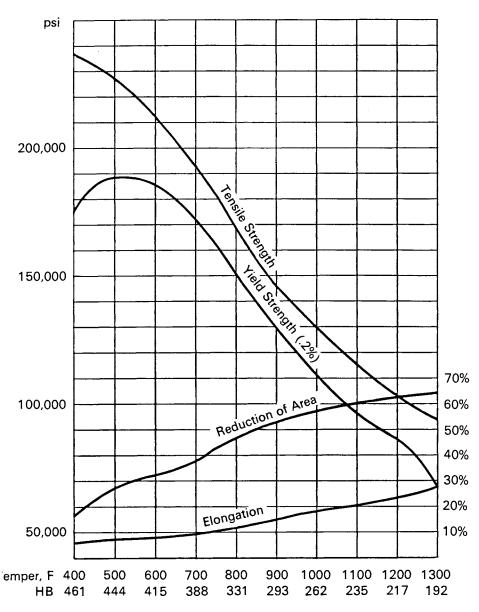
As-quenched Hardness (water)

Size Round	Surface	1⁄2 Radius	Center
1/2	HRC 57	HRC 53	HRC 50
1	HRC 56	HRC 50	HRC 45
2	HRC 52	HRC 35	HRC 24
4	HRC 48	HRC 23	HRC 20

Treatment: Normalized at 1650 F; reheated to 1550 F; quenched in water. 1-in. Round Treated; .505-in. Round Tested. As-quenched HB 415.

SINGLE HEAT RESULTS

	С	Mn	P	S	Si	
Grade	.37/.45	1.35/1.65	.040 Max	.08/.13	_	Grain Size
Ladle	.39	1.58	.02	.08	.19	90% 2-4 10% 5
(ritical Poir	nte Fr Ac. 1	1330 Ac. 1	435 Ar.	1230	Δr. 1190


Yield Strength

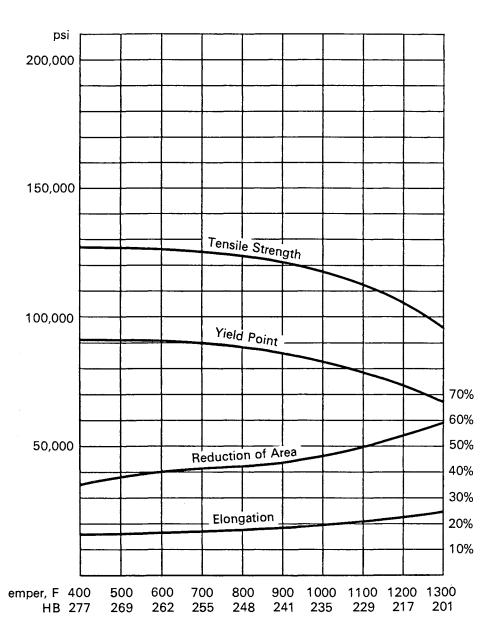
MASS EFFECT

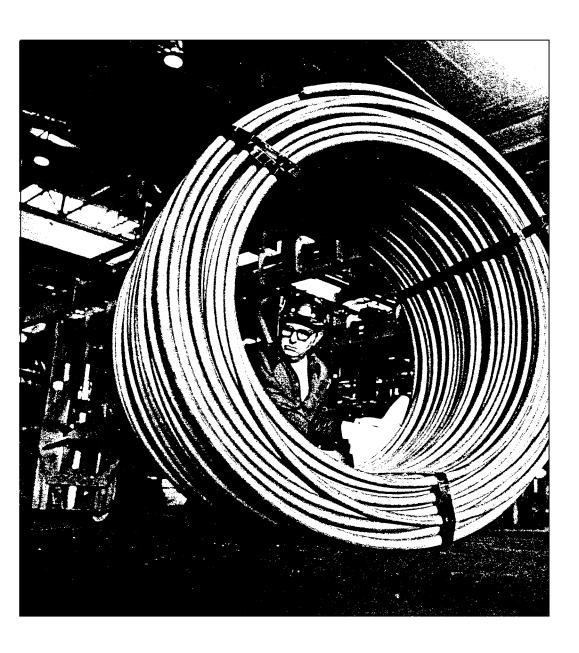
Size Round in.	d Tensile Strength psi	(.2% Offset) psi		Reduction of Area, %	Hardness HB							
Annealed (Heated to 1500 F, furnace-cooled 20 F per hour to 900 F, cooled in air.)												
1	86,800	51,200	25.5	49.3	163							
Normalized (Heated t	to 1650 F, coole	d in air.)										
1/2	105,800	62,300	22.7	57.8	207							
1	102,500	58,750	22.7	55.5	201							
2	101,200	57,000	22.5	55.8	201							
4	100,500	55,000	21.7	49.3	201							
Oil-quenched from 1	500 F, tempered	at 1000 F.										
1/2	129,500	110,200	18.7	57.1	262							
1	110,200	75,300	23.5	58.7	229							
2	108,500	74,700	21.8	57.2	217							
4	107,200	66,800	20.8	54.3	212							
Oil-quenched from 15	500 F, tempered	at 1100 F.										
1/2	116,200	95,700	20.7	60.6	235							
1	103,000	69,800	23.8	62.2	207							
2	101,000	68,700	24.0	62.5	201							
4	100,000	61,300	23.5	59.1	197							
Oil-quenched from 15	500 F, tempered	at 1200 F.										
1/2	105,200	87,400	23.5	63.8	217							
1	96,300	69,600	24.8	64.1	197							
2	95,800	65,300	25.2	65.1	192							
4	95,200	60,300	25.2	63.0	183							

Size Round	Surface	½ Radius	Center
1/2	HRC 52	HRC 49	HRC 46
1	HRC 48	HRC 43	HRC 38
2	HRC 36	HRC 28	HRC 22
4	HRC 27	HRC 22	HRC 18

Treatment: Normalized at 1575 F; reheated to 1500 F; quenched in oil. .530-in. Round Treated; .505-in. Round Tested. As-quenched HB 495.

SINGLE HEAT RESULTS


	С	Mn	P	s	Si	
Grade	.40/.48	1.35/1.65	.040 Max	.24/.33	_	Grain Size
Ladle	.46	1.37	.019	.24	.05	75% 1-4 25% 5-6
(ritical Poir	nts F. Ac.	1335 Δα. 1	400 Ar.	1285	Δr. 1200


MASS EFFECT

	Size Round in.	Tensile Strength psi	Yield Point psi	Elongation % 2 in.	Reduction of Area, %	Hardness HB						
Annealed (Heated to 1450 F, furnace-cooled 20 F per hour to 1150 F, cooled in air.)												
	1	84,750	50,250	24.8	41.3	167						
Normalized	l (Heated to	1650 F, cooled	d in air.)									
	1/2	98,000	60,500	24.6	51.0	201						
	1	96,750	58,000	21.0	40.4	197						
	2	95,500	54,000	21.5	45.0	192						
	4	94,250	52,500	21.5	42.7	192						
Oil-quench	ed from 15	50 F, tempered	at 1000 F.									
	1/2	113,500	79,000	20.4	52.1	235						
	1	108,500	72,750	19.3	46.0	223						
	2	105,000	67,750	20.5	49.6	212						
	4	101,750	63,000	21.5	50.0	207						
Oil-quench	ed from 15	50 F, tempered	at 1100 F.									
	1/2	104,000	71,250	20.7	51.2	217						
	1	102,750	68,000	21.5	51.4	212						
	2	101,000	65,000	23.3	56.5	207						
	4	94,250	57,750	23.8	54.4	192						
Oil-quench	ed from 15	50 F, tempered	at 1200 F.									
	1/2	97,500	69,000	23,2	55.2	201						
	1	97,000	68,000	23.0	52.4	201						
	2	94,000	61,500	24.0	57.7	192						
	4	89,000	54,000	25.8	57.7	183						

Size Round	Surface	1/2 Radius	Center
1/2	HRC 39	HRC 32	HRC 28
1	HRC 36	HRC 29	HRC 24
2	HRC 30	HRC 27	HRC 22
4	HRC 27	HRB 98	HRB 97

Treatment: Normalized at 1650 F; reheated to 1550 F; quenched in oil. 1-in. Round Treated; .505-in. Round Tested. As-quenched HB 285.

ALLOY STEEL CARBURIZING GRADES

122	4118
124	4320
126	4419
128	4620
130	4820
132	8620
134	E9310

SINGLE HEAT RESULTS

	С	Mn	P	S	Si	Ni	Cr	Мо	
Grade	.18/.23	.70/.90		_	.20/.35	_	.40/.60	.08/.15	Grain Size
Ladle	.21	.80	.008	.007	.27	.16	.52	.08	6-8

MASS EFFECT

	MASSE	FFECT				
	Size Round in.	Tensile Strength psi	Yield Strength (.2% Offset) psi		Reduction of Area, %	Hardness HB
Annealed (F	Heated to 1	600 F ; furnace-	cooled 20 F p	per hour to 1	150 F; coc	oled in air.)
	1	75,000	53,000	33.0	63.7	137
Normalized	(Heated to	1670 F; coole	ed in air.)			
	.565	85,000	57,000	31.5	70.1	170
	1	84,500	56,000	32.0	71.0	156
	2	77,500	54,500	34.0	74.4	143
	4	75,500	49,500	34.0	71.2	137
	urized at 1 tempered a	700 F for 8 ho at 300 F.	ours; reheate	ed to 1525	F; quench	ned in oil;
	.565	143,000	93,500	17.5	41.3	293
	1	119,000	64,500	21.0	37.5	241
	2	97,000	46,000	26.5	56.3	201
	4	93,000	43,500	28.0	61.3	192
	urized at 1 tempered a	700 F for 8 ho	ours; reheate	ed to 1525	F; quench	ned in oil;
	.565	138,000	89,500	17.5	41.9	277

64,000

45,500

43,000

22.0

28.0

28.5

49.0

62.0

63.5

235

192

187

As-quenched Hardness (oil)

1

2

4

Size Round	Surface	½ Radius	Center
.565	HRC 33	HRC 33	HRC 33
1	HRC 22	HRC 20	HRC 20
2	HRB 88	HRB 88	HRB 87
4	HRB 87	HRB 87	HRB 85

115,000

93,500

89,500

SINGLE HEAT RESULTS

	С	Mn	Р	S	Si	Ni	Cr	Мо	Grain Size
Ladle				.007					

Critical Points, F: Ac: 1380 Ac₃ 1520 Ar₃ 1430 Ar₁ 1260

.565-in. Round Treated: .505-in. Round Tested

CASE

CORE PROPERTIES

		Yield Strength			
Hardness Depth HRC in.	Tensile Strength psi	(.2% Offset) psi	Elongation % 2 in.	Reduction of Area, %	Hardness HB

Recommended Practice for Maximum Case Hardness

Direct quench from pot: 1) Carburized at 1700 F for 8 hours; 2) guenched in agitated oil; 3) tempered at 300 F.

61 .063 177,500 131.000 9.0 42.3

Single-quench and temper—for good case and core properties:

1) Carburized at 1700 F for 8 hours; 2) pot-cooled; 3) reheated to 1525 F:

4) quenched in agitated oil; 5) tempered at 300 F.

62 .047 143.000 93.500 17.5 41.3 293

Double-quench and temper—for maximum refinement of case and core:

Carburized at 1700 F for 8 hours;
 pot-cooled;
 reheated to 1525 F;

quenched in agitated oil;
 reheated to 1475 F;
 quenched in agitated oil;

7) tempered at 300 F.

.063

57

62 .047 126,000 63,500 21.0 42.4 241

Recommended Practice for Maximum Core Toughness

Direct quench from pot: 1) Carburized at 1700 F for 8 hours; 2) quenched in agitated oil; 3) tempered at 450 F.

177,000 Single-quench and temper—for good case and core properties:

1) Carburized at 1700 F for 8 hours; 2) pot-cooled; 3) reheated to 1525 F;

130,000

13.0

48.0

4) quenched in agitated oil; 5) tempered at 450 F.

56 .047 138,000 89,500 17.5 41.9 277

Double-quench and temper—for maximum refinement of case and core:

1) Carburized at 1700 F for 8 hours; 2) pot-cooled; 3) reheated to 1525 F;

4) quenched in agitated oil; 5) reheated to 1475 F; 6) quenched in agitated oil;

7) tempered at 450 F.

56 .047 120.000 63,000 22.0 229 48.9

SINGLE HEAT RESULTS

	С	Mn	P	S	Si	Ni	Cr	Мо	- Grain
Grade	17/.22	.45/.65	_	_	.20/.35	1.65/2.00	.40/.60	.20/.30	
Ladle	.20	.59	.021	.018	.25	1.77	.47	.23	6-8

MASS EFFECT

	Size Round in.	Tensile Strength	Yield Point psi	Elongation % 2 in.	Reduction of Area, %	Hardness HB			
Annealed (Annealed (Heated to 1560 F; furnace-cooled 30 F per hour to 790 F; cooled in air.)								
	1	84,000	61,625	29.0	58.4	163			
Normalized	(Heated to	1640 F; coole	d in air.)						
	1/2	121,500	74,375	23.9	54.3	248			
	1	115,000	67,250	20.8	50.7	235			
	2	102,500	58,750	23.3	59.2	212			
	4	102,000	57,000	22.3	54.7	201			
Mock-Carb		700 F for 8 ho	ours; reheate	ed to 1500	F; quench	ned in oil;			
	tempered a	at 300 F.							
	1/2	212,000	163,250	11.8	45.5	415			
	1	152,500	107,250	17.0	51.0	302			
	2	132,500	86,000	22.5	56.4	255			
	4	119,750	75,250	24.0	57.1	248			
Mock-Carb		700 F for 8 ho	ours; reheat	ed to 1500	F; quench	ned in oil;			
	tempered a	at 450 F.							
	1/2	187,500	149,500	13.9	52.8	388			
	1	148,750	105,000	17.8	55.2	285			
	2	129,750	85,000	20.8		255			
	4	118,000	75,000	22.5	51.9	241			

Size Round	Surface	1/2 Radius	Center
1/2	HRC 44.5	HRC 44.5	HRC 44.5
1	HRC 39	HRC 37	HRC 36
2	HRC 35	HRC 30	HRC 27
4	HRC 25	HRC 24	HRC 24

SINGLE HEAT RESULTS

	С	Mn	Р	s	Si	Ni	Cr	Мо	Grain Size
Ladie	.20	.59	.021	.018	.25	1.77	.47	.23	6-8
	0.00	D = ! = 4=	F. A-	1050	4.400			040	

Critical Points, F: Ac₁ 1350 Ac₃ 1485 Ar₃ 1330 Ar₁ 840

.565-in. Round Treated; .505-in. Round Tested

CASE CORE PRO

CORE PROPERTIES

Hardness	Depth
HRC	in.

Tensile Strength	Yield Point	Elongation	Reduction	Hardness	
psi	psi	% 2 in.	of Area, %	нв	

Recommended Practice for Maximum Case Hardness

Direct quench from pot: 1) Carburized at 1700 F for 8 hours; 2) quenched in agitated oil; 3) tempered at 300 F.

60.5 .060

217,000

159,500

13.0

13.5

429

Single-quench and temper—for good case and core properties:

1) Carburized at 1700 F for 8 hours; 2) pot-cooled; 3) reheated to 1500 F;

4) quenched in agitated oil; 5) tempered at 300 F.

62.5 .075

218,250

178,000

48.2

50.1

429

Double-quench and temper—for maximum refinement of case and core:

1) Carburized at 1700 F for 8 hours; 2) pot-cooled; 3) reheated to 1500 F;

4) quenched in agitated oil; 5) reheated to 1425 F; 6) quenched in agitated oil; 7) tempered at 300 F.

62 .075

151.750

97,000

19.5

302

Recommended Practice for Maximum Core Toughness

Direct quench from pot: 1) Carburized at 1700 F for 8 hours; 2) quenched in agitated oil; 3) tempered at 450 F.

58.5 .060

215.500

158,750

12.5

49.4

49.4

415

Single-quench and temper—for good case and core properties:

1) Carburized at 1700 F for 8 hours; 2) pot-cooled; 3) reheated to 1500 F;

4) quenched in agitated oil; 5) tempered at 450 F.

59 .075

211.500

173,000

12.5

50.9

415

Double-quench and temper—for maximum refinement of case and core:

1) Carburized at 1700 F for 8 hours; 2) pot-cooled; 3) reheated to 1500 F;

4) quenched in agitated oil; 5) reheated to 1425 F; 6) quenched in agitated oil;

7) tempered at 450 F.

59 .075

145,750

94.500

21.8

56.3

SINGLE HEAT RESULTS

	С	Mn	P	S	Si	Ni	Cr	Мо	
Grade	.18/.23	.45/.65			.20/.35	_		.45/.60	Grain Size
Ladle	.18	.57	.010	.029	.28	.03	.01	.52	6-8

MASS EFFECT

	Size Round in.	Tensile Strength psi	Yield Point psi	Elongation % 2 in.	Reduction of Area, %	Hardness HB				
Annealed (Annealed (Heated to 1675 F; furnace-cooled 20 F per hour to 900 F; cooled in air.)									
	1	64,750	48,000	31.2	62.8	121				
Normalized	(Heated to	1750 F; coole	d in air.)							
	1/2*	77,500	52,250	33.2	69.9	149				
	1	75,250	51,000	32.5	69.4	143				
	2	72,250	50,000	30.8	64.9	143				
	4	72,750	47,750	30.0	60.8	143				
Mock-Carb	urized at 1 tempered a	700 F for 8 ho	urs; reheate	ed to 1550	F; quench	ned in oil;				
	1/2*	103,250	65,250	24.3	60.3	217				
	1	97,250	62,750	24.2	66.4	201				
	2	96,000	60,250	25.3	64.7	201				
	4	86,000	53,250	27.7	66.3	179				
Mock-Carb	Mock-Carburized at 1700 F for 8 hours; reheated to 1550 F; quenched in oil; tempered at 450 F,									
	1/4*	102,750	62,500	24.8	63.6	212				
	1	94,250	58,750	25.0	68.6	197				
	2	92,500	58,000	26.2	68.2	192				

83,500 48,500 27.0 67.1 170

Size Round	Surface	1/2 Radius	Center	
1/2	HRB 96	HRB 95	HRB 93	_
1	HRB 94	HRB 93	HRB 89	
2	HRB 94	HRB 92	HRB 88	
4	HRB 93	HRB 90	HRB 82	

^{*}Treated as .565 in. Rd.

SINGLE HEAT RESULTS

	С	Mn	P	s	Si	Ni	Cr	Мо	
Ladle	.18	.57	.010	.029	.28	.03	.01	.52	Grain Size
C	ritical	Points, F:	Ac ₁ 13	380 Ac	₃ 1600	Ar ₃ 151	0 Ar	1420	6-8
	565-in	. Round Tr	eated :	505-in	Round 1	Tested			

CASE

CORE PROPERTIES

Hardness	Depth
HRC	in.

Tensile Strength	Yield Point	Elongation	Reduction	Hardness
psi	psi	% 2 in.	of Area, %	нв

Recommended Practice for Maximum Case Hardness

Direct quench from pot: 1) Carburized at 1700 F for 8 hours; 2) quenched in agitated oil; 3) tempered at 300 F.

64 .054 120,500

88,250

19.7

241

Single-quench and temper—for good case and core properties:

1) Carburized at 1700 F for 8 hours; 2) pot-cooled; 3) reheated to 1550 F;

4) quenched in agitated oil; 5) tempered at 300 F.

65 .062 103.250

65.250

24.3

60.3 217

64.7

Double-quench and temper—for maximum refinement of case and core:

1) Carburized at 1700 F for 8 hours; 2) pot-cooled; 3) reheated to 1575 F;

4) quenched in agitated oil; 5) reheated to 1525 F; 6) quenched in agitated oil;

7) tempered at 300 F.

66 .070 106,500

54,750

21.7

49.7 217

Recommended Practice for Maximum Core Toughness

Direct quench from pot: 1) Carburized at 1700 F for 8 hours; 2) quenched in agitated oil; 3) tempered at 450 F.

59

.054

118,500

86,500

18.8

24.8

67.0 235

Single-quench and temper—for good case and core properties:

1) Carburized at 1700 F for 8 hours; 2) pot-cooled; 3) reheated to 1550 F;

4) quenched in agitated oil; 5) tempered at 450 F.

60.5 .062 102,750

62.500

63.6

212

Double-quench and temper—for maximum refinement of case and core:

1) Carburized at 1700 F for 8 hours; 2) pot-cooled; 3) reheated to 1575 F;

4) quenched in agitated oil; 5) reheated to 1525 F; 6) quenched in agitated oil;

7) tempered at 450 F.

61 .070 98,500

54,500

23.4

59.7

SINGLE HEAT RESULTS

	С	Mn	Р	S	Si	Ni	Cr	Мо	
Grade	.17/.22	.45/.65	_	_	.20/.35	1.65/2.00		.20/.30	[™] Grain Size
Ladle	17	52	017	016	26	1.81	10	.21	6-8

MASS EFFECT

	Size Round in.	Tensile Strength psi	Yield Point psi	Elongation % 2 in.	Reduction of Area, %	Hardness HB					
Annealed (Heated to 1575 F; furnace-cooled 30 F per hour to 900 F; cooled in air.)											
	1	74,250	54,000	31.3	60.3	149					
Normalized (Heated to 1650 F; cooled in air.)											
	1/2	87,250	54,750	30.7	68.0	192					
	1	83,250	53,125	29.0	66.7	174					
	2	80,500	53,000	29.5	67.1	167					
	4	77,000	51,750	30.5	65.2	163					
Mock-Cark		700 F for 8 ho	ours; reheate	ed to 1500	F; quench	ned in oil;					
	tempered a	at 300 F.									
	1/2	127,000	89,500	20.0	59.8	255					
	1	98,000	67,000	25.8	70.0	197					
	2	96,500	65,250	27.0	69.7	192					
	4	84,750	52,500	29.5	69.2	170					
Mock-Carb		700 F for 8 ho	urs; reheate	ed to 1500	F; quench	ned in oil;					
	tempered a	at 450 F.									
	1/2	117,500	81,000	21.4	65.3	241					
	1	98,000	66,250	27.5	68.9	192					
	2	95,750	62,000	26.8	69.2	187					
	4	84,500	52,750	29.8	70.3	170					

Size Round	Surface	½ Radius	Center
1/2	HRC 40	HRC 32	HRC 31
1	HRC 27	HRB 99	HRB 97
2	HRC 24	HRB 94	HRB 91
4	HRB 96	HRB 91	HRB 88

SINGLE HEAT RESULTS

	С	Mn	P	S	Si	Ni	Cr	Мо	Grain — Size
Ladle	.17	.52	.017	.016					
_									

Critical Points, F: Ac₁ 1300 Ac₃ 1490 Ar₃ 1335 Ar₁ 1220

.565-in. Round Treated; .505-in. Round Tested

CASE

CORE PROPERTIES

Hardness	Depth
HRC	in.

Tensile Strength	Yield Point	Elongation	Reduction	Hardness
psi	psi	% 2 in.	of Area, %	нв

Recommended Practice for Maximum Case Hardness

Direct quench from pot: 1) Carburized at 1700 F for 8 hours; 2) quenched in agitated oil; 3) tempered at 300 F.

60.5 .075 148,250

116,500

17.0

55.7 311

Single-quench and temper—for good case and core properties:

1) Carburized at 1700 F for 8 hours; 2) pot-cooled; 3) reheated to 1500 F;

4) quenched in agitated oil; 5) tempered at 300 F.

62.5 .075 119.250

83.500

277

Double-guench and temper—for maximum refinement of case and core:

1) Carburized at 1700 F for 8 hours; 2) pot-cooled; 3) reheated to 1525 F;

4) quenched in agitated oil; 5) reheated to 1475 F; 6) quenched in agitated oil;

7) tempered at 300 F.

060 62

122,000

77,250

22.0

55.7

59.4

248

Recommended Practice for Maximum Core Toughness

Direct quench from pot: 1) Carburized at 1700 F for 8 hours; 2) quenched in agitated oil; 3) tempered at 450 F.

58.5

.060

147,500

115,750

16.8

57.9

302

Single-quench and temper—for good case and core properties:

1) Carburized at 1700 F for 8 hours; 2) pot-cooled; 3) reheated to 1500 F;

4) quenched in agitated oil; 5) tempered at 450 F.

59

.065

115.500

80.750

20.5

63.6

248

Double-quench and temper—for maximum refinement of case and core:

1) Carburized at 1700 F for 8 hours; 2) pot-cooled; 3) reheated to 1525 F;

4) guenched in agitated oil; 5) reheated to 1475 F; 6) guenched in agitated oil;

7) tempered at **450** F.

59

.060

115,250

77.000

22.5

62.1

SINGLE HEAT RESULTS

	С	Mn	P	S	Si	Ni	Cr	Мо	- Cusin
Grade	.18/.23	.50/.70	_		.20/.35	3.25/3.75	_	.20/.30	Grain Size
Ladle	.20	.61	.027	.016	.29	3.47	.07	.22	6-8

MASS EFFECT

Size Round in.	Size Round Tensile Strength in. psi		Elongation % 2 in.	Reduction of Area, %	Hardness HB					
Annealed (Heated to 1500 F; furnace-cooled 30 F per hour to 500 F; cooled in air.)										
1	98,750	67,250	22.3	58.8	197					
Normalized (Heated to 1580 F; cooled in air.)										
1/2	112,500	72,500	26.0	57.8	235					
1	109,500	70,250	24.0	59.2	229					
2	107,250	69,000	23.0	59.8	223					
4	103,500	68,000	22.0	58.4	212					
Mock-Carburized at 1 tempered a		urs; reheate	ed to 1475	F; quench	ned in oil;					
•		172.750	112	540	401					
½ 1	209,000	172,750	14.2	54.3 51.0	401					
2	169,500	126,500	15.0	51.0 56.3	352 277					
4	135,500	93,250	19.8	56.3 59.4	241					
4	118,750	81,000	23.0	59.4	241					
Mock-Carburized at 1	700 F for 8 ho	urs; reheate	ed to 1475	F; quench	ned in oil;					
tempered a	at 450 F.									
1/2	205,000	170,000	13.2	52.3	388					
1	163,250	120,500	15.5	53.1	331					
2	130,000	92,500	19.0	62.7	269					
4	117,000	80,000	21.0	63.8	235					

Size Round	Surface	½ Radius	Center
1/2	HRC 45	HRC 45	HRC 44
1	HRC 43	HRC 39	HRC 37
2	HRC 36	HRC 31	HRC 27
4	HRC 27	HRC 24	HRC 24

SINGLE HEAT RESULTS

_	С	Mn	Р	s	Si	Ni	Cr	Мо	
Ladle	.21	.51	.021	.018	.21	3.49	.18	.24	— Grain Size
(Critical	Points, F:	Acı	1310	Ac ₃ 1440	Ar₃ 12	15 Aı	n 780	6-8
	.565-in	. Round Tr	eated;	.505-	in. Round	Tested			

CASE

CORE PROPERTIES

						
Hardness	Depth	Tensile Streng	gth Yield Point	Elongation	Reduction	Hardness
HRC	in.	psi	psi	% 2 in.	of Area, %	нв

Recommended Practice for Maximum Case Hardness

Direct quench from pot: 1) Carburized at 1700 F for 8 hours; 2) quenched in agitated oil; 3) tempered at 300 F.

60 .039 205,000

165,500

53.3

415

Single-quench and temper—for good case and core properties:

1) Carburized at 1700 F for 8 hours; 2) pot-cooled; 3) reheated to 1475 F;

4) quenched in agitated oil; 5) tempered at 300 F.

61 .047 207,500

167,000

52.2

415

Double-quench and temper—for maximum refinement of case and core:

1) Carburized at 1700 F for 8 hours; 2) pot-cooled; 3) reheated to 1500 F;

4) quenched in agitated oil; 5) reheated to 1450 F; 6) quenched in agitated oil;

7) tempered at 300 F.

60 .047 204,500

165.500

13.8

13.3

13.8

52.4

415

Recommended Practice for Maximum Core Toughness

Direct quench from pot: 1) Carburized at 1700 F for 8 hours; 2) quenched in agitated oil; 3) tempered at 450 F.

56

.039

200.500

170,000

12.8

53.0

401

415

Single-quench and temper—for good case and core properties:

1) Carburized at 1700 F for 8 hours; 2) pot-cooled; 3) reheated to 1475 F;

4) quenched in agitated oil; 5) tempered at 450 F.

57.5 .047 205,000

184.500

13.0

53.3

Double-quench and temper—for maximum refinement of case and core:

1) Carburized at 1700 F for 8 hours; 2) pot-cooled; 3) reheated to 1500 F;

4) quenched in agitated oil; 5) reheated to 1450 F; 6) quenched in agitated oil;

7) tempered at 450 F.

56.5 .047 196,500

171.500

13.0

53.4

SINGLE HEAT RESULTS

_	С	Mn	P	S	Si	Ni	Cr	Мо	Grain
Grade	.18/.23	.70/.90	_		.20/.35	.40/.70	.40/.60	.15/.25	Size
Ladle	.23	.81	.025	.016	.28	.56	.43	.19	90% 7-8 10% 4

MASS EFFECT

	·····									
	Size Round in.	Tensile Strength psi	Yield Point psi	Elongation % 2 in.	Reduction of Area, %	Hardness HB				
Annealed (H	Heated to 16	600 F ; furnace-d	cooled 30 F	per hour to 1	1150 F ; cod	oled in air.)				
	1	77,750	55,875	31.3	62.1	149				
Normalized	(Heated to	1675 F; cooled	d in air.)							
	1/2	96,500	54,250	26.3	62.5	197				
	1	91,750	51,750	26.3	59.7	183				
	2	87,250	51,500	27.8	62.1	179				
	4	81,750	51,500	28.5	62.3	163				
	urized at 1 tempered a	700 F for 8 ho t 300 F.	urs; reheate	ed to 1550	F; quench	ned in oil;				
	1/2	199,500	157,000	13.2	49.4	388				
	1	126,750	83,750	20.8	52.7	255				
	2	117,250	73,000	23.0	57.8	235				
	4	98,500	57,750	24.3	57.6	207				
	urized at 1 tempered a	700 F for 8 ho	urs; reheate	ed to 1550	F; quench	ned in oil;				
			400 500	440	50.0	050				
	1/2	178,500	139,500	14.6	53.9	352				
	1	124,250	80,750	19.5	54.2	248				
	2	114,500	72,250	22.0	59.0	229				
	4	98,000	55,500	25.5	57.8	201				

Size Round	Surface	½ Radius	Center
1/2	HRC 43	HRC 43	HRC 43
1	HRC 29	HRC 27	HRC 25
2	HRC 23	HRC 22	HRB 97
4	HRC 22	HRB 95	HRB 93

SINGLE HEAT RESULTS

	С	Mn	Р	s	Si	Ni	Cr	Мо	Grain Size
Ladle	.23	.81	.025	.016	.28	.56	.43	.19	90% 7-8 10% 4
	Critical	Points, F:	Ac ₁	1380	Ac ₃ 1520	Ar ₃ 1	400	Arı 1200	. 676

.565-in. Round Treated; .505-in. Round Tested

CASE

CORE PROPERTIES

Hardness	Depth
HRC	in.

Tensile Strength	Yield Point	Elongation	Reduction	Hardness
psi	psi	% 2 in.	of Area, %	нв

Recommended Practice for Maximum Case Hardness

Direct quench from pot: 1) Carburized at 1700 F for 8 hours; 2) quenched in agitated oil; 3) tempered at 300 F.

63 .056

192,000

150,250

12.5

11.5

49.4

388

Single-quench and temper—for good case and core properties:

1) Carburized at 1700 F for 8 hours; 2) pot-cooled; 3) reheated to 1550 F;

4) quenched in agitated oil; 5) tempered at 300 F.

64 .075

188,500

149,750

51.6

388

Double-quench and temper—for maximum refinement of case and core:

1) Carburized at 1700 F for 8 hours; 2) pot-cooled; 3) reheated to 1550 F;

4) quenched in agitated oil; 5) reheated to 1475 F; 6) quenched in agitated oil;

83,000

7) tempered at 300 F.

64 .070

133,000

20.0

56.8

269

Recommended Practice for Maximum Core Toughness

Direct quench from pot: 1) Carburized at 1700 F for 8 hours; 2) quenched in agitated oil; 3) tempered at 450 F.

58

.050

181,250

134,250

12.8

50.6

352

Single-quench and temper—for good case and core properties:

1) Carburized at 1700 F for 8 hours; 2) pot-cooled; 3) reheated to 1550 F;

4) quenched in agitated oil; 5) tempered at 450 F.

61 .076

167.750

120.750

14.3

53.2 341

Double-quench and temper—for maximum refinement of case and core:

1) Carburized at 1700 F for 8 hours; 2) pot-cooled; 3) reheated to 1550 F;

4) quenched in agitated oil; 5) reheated to 1475 F; 6) quenched in agitated oil;

7) tempered at 450 F.

61 .070

130,250

77,250

22.5

51.7

E9310

SINGLE HEAT RESULTS

	С	Mn	P	s	Si	Ni	Cr	Мо	
Grade	.08/.13	.45/.65	_	_	.20/.35	3.00/3.50	1.00/1.40	.08/.15	Grain Size
Ladle	.09	.57	.012	.010	.32	3.11	1.23	.13	80% 5 20% 2-4

Size Round Tensile Strength Yield Point Elongation Reduction Hardness

MASS EFFECT

	in.	psi	psi	% 2 in.	of Area, %	НВ
Annealed (H	leated to 1	1550 F; furnace	-cooled 30 F	per hour to	760 F; cool	ed in air.)
	1	119,000	63,750	17.3	42.1	241
Normalized	(Heated t	o 1630 F; coole	ed in air.)			
	1/2	133,000	87,750	20.0	63.7	285
	1	131,500	82,750	18.8	58.1	269
	2	131,250	82,000	19.5	60.5	262
	4	125,250	81,750	19.5	61.7	255
Mock-Carbu	ırized at '	1700 F for 8 he	ours; reheate	ed to 1450) F; quenche	ed in oil;
1	tempered	at 300 F.				
	1/2	178.750	143.000	15.7	58.9	363

1/2	178,750	143,000	15.7	58.9	363
1	159,000	122,750	15.5	57.5	321
2	145,250	108,000	18.5	66.7	293
4	136,000	94,750	19.0	62.3	277

Mock-Carburized at 1700 F for 8 hours; reheated to 1450 F; quenched in oil; tempered at **450** F.

1/2	178,250	141,500	15.0	60.3	363
1	157,500	123,000	16.0	61.7	321
2	143,500	105,500	17.8	68.1	293
4	131,500	96,500	20.5	67.0	269

Size Round	Surface	½ Radius	Center
1/2	HRC 40	HRC 40	HRC 38
1	HRC 40	HRC 38	HRC 37
2	HRC 38	HRC 35	HRC 32
4	HRC 31	HRC 30	HRC 29

E9310

SINGLE HEAT RESULTS

_	С	Mn	Р	s	Si	Ni	Cr	Мо	Grain Size
Ladle	11.	.53	.013	.014	.29	3.19	1.23	.11	
С	ritical F	oints. F:	Acı 1	350 Ad	1480	Ar ₂ 12	10 Ar. 1	R10	

.565-in. Round Treated; .505-in. Round Tested

.....

CASE

CORE PROPERTIES

Hardness Depth	Tensile Strength	Yield Point	Elongation	Reduction of Area, %	Hardness
HRC in.	psi	psi	% 2 in.		HB
					1

Recommended Practice for Maximum Case Hardness

Direct quench from pot: 1) Carburized at 1700 F for 8 hours; 2) quenched in agitated oil; 3) tempered at 300 F.

59.5 .039

179,500

144,000

15.3

15.5

59.1

375

Single-quench and temper—for good case and core properties:

1) Carburized at 1700 F for 8 hours; 2) pot-cooled; 3) reheated to 1450 F;

4) quenched in agitated oil; 5) tempered at 300 F.

62 .047

173,000

135,000

60.0

363

Double-quench and temper—for maximum refinement of case and core:

1) Carburized at 1700 F for 8 hours; 2) pot-cooled; 3) reheated to 1475 F;

4) quenched in agitated oil; 5) reheated to 1425 F; 6) quenched in agitated oil;

7) tempered at 300 F.

60.5 .055

174,500

139,000

15.3

62.1

363

Recommended Practice for Maximum Core Toughness

Direct quench from pot: 1) Carburized at 1700 F for 8 hours; 2) quenched in agitated oil; 3) tempered at 450 F.

54.5 .039

178,000

146,500

15.0

59.7

60.0

363

Single-quench and temper—for good case and core properties:

1) Carburized at 1700 F for 8 hours; 2) pot-cooled; 3) reheated to 1450 F;

4) quenched in agitated oil; 5) tempered at 450 F.

59.5 .047

168,000

137,500

15.5

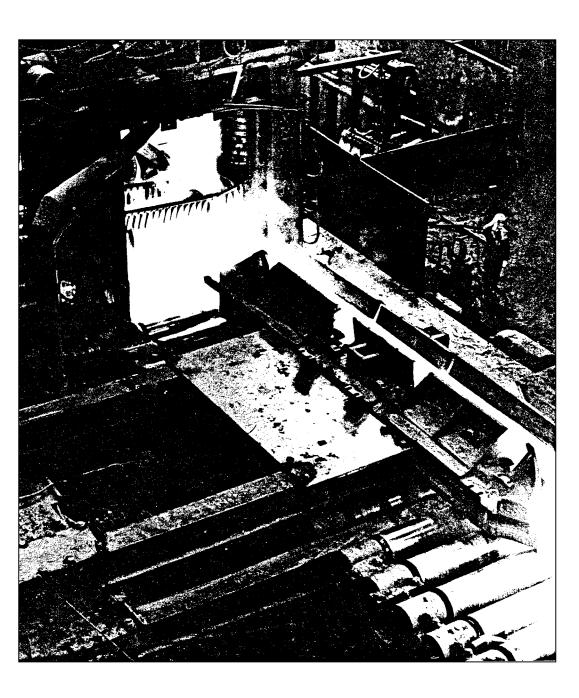
341

Double-quench and temper—for maximum refinement of case and core:

1) Carburized at 1700 F for 8 hours; 2) pot-cooled; 3) reheated to 1475 F;

4) quenched in agitated oil; 5) reheated to 1425 F; 6) quenched in agitated oil;

7) tempered at **450** F.


58 .055

169,500

138,000

14.8

61.8

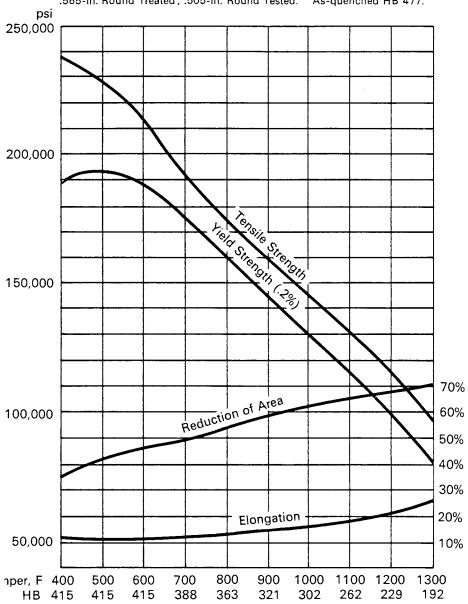
ALLOY STEEL WATER-HARDENING GRADES

SINGLE HEAT RESULTS

	С	Mn	P	S	Si	Ni	Cr	Мо	
Grade	.25/.30	.70/.90			.20/.35	_	_	.20/.30	Grain Size
Ladie	.27	75	014	033	28	05	07	22	5-7

MASS EFFECT

S	ize Round in.	Tensile Streng psi	th Yield Strength (.2% Offset) psi		Reduction of Area, %	Hardness HB
Annealed (He	eated to 1	585 F, furnac	e-cooled 20 F p	er hour to	800 F, coc	oled in air.)
	1	75,000	47,250	30.0	52.9	143
Normalized (Heated to	1660 F, coo	led in air.)			
	.565	94,500	61,500	25.5	60.2	179
	1	93,250	61,250	25.8	60.2	179
	2	85,500	55,750	27.7	57.1	163
	4	81,750	51,250	28.3	55.9	156
Water-quenc	hed from	1585 F, temp	pered at 900 F.			
	.565	156,500	143,250	15.8	58.4	321
	1	150,000	133,000	16.0	57.8	311
	2	114,500	89,000	22.0	66.6	229
	4	101,000	77,500	25.0	68.3	201
Water-quenc	hed from	1585 F, temp	ered at 1000 F.			
	.565	144,000	130,500	17.7	61.3	302
	1	139,250	122,250	18.8	60.1	285
	2	111,000	85,000	23.7	67.2	223
	4	100,000	73,750	25.2	67.4	201
Water-quenc	hed from	1585 F, temp	pered at 1100 F.			
	.565	130,250	115,750	20.0	64.5	262
	1	114,250	93,250	23.0	67.6	229
	2	104,250	80,000	24.8	68.3	212
	4	95,000	71,000	26.6	68.0	192


As-quenched Hardness (water)

Size Round	Surface	½ Radius	Center
.565	HRC 50	HRC 50	HRC 50
1	HRC 50	HRC 47	HRC 44
2	HRC 47	HRC 27	HRC 27
4	HRB 83	HRB 77	HRB 75

SINGLE HEAT RESULTS

	С	Mn		S						
Ladle	.27	.75		.033					0.20	
	Critic	al Poir	nts, F:	Ac ₁	1370	Ac ₃	1510	Ar ₃	1410	Ar ₁ 1320

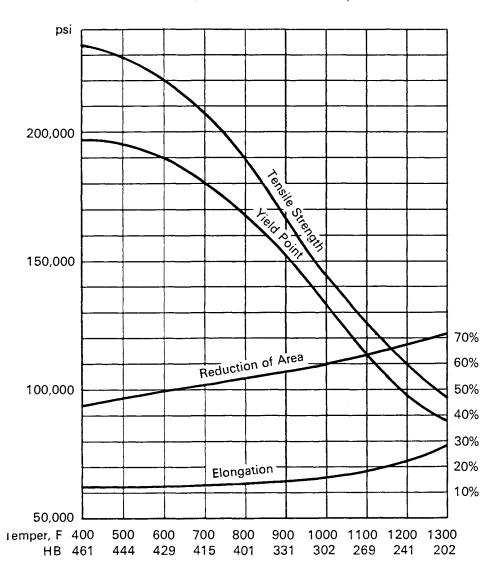
Treatment: Normalized at 1660 F; reheated to 1585 F; quenched in water. .565-in. Round Treated; .505-in. Round Tested. As-quenched HB 477.

SINGLE HEAT RESULTS

	С	Mn	P	S	Si	Ni	Cr	Мо	
Grade	.28/.33	.40/.60			.20/.35		.80/1.10	.15/.25	Grain Size
Ladie	.30	.48	.015	.015	.20	.12	.91	.20	6-8

MASS EFFECT

	Size Round in.	Tensile Strength psi	Yield Point psi	Elongation % 2 in.	Reduction of Area, %	Hardness HB					
Annealed (Annealed (Heated to 1585 F, furnace-cooled 20 F per hour to 1255 F, cooled in air.)										
	1	81,250	52,250	28.2	55.6	156					
Normalized	d (Heated to	1600 F, cooled	d in air.)								
	1/2	106,500	67,000	25.1	59.6	217					
	1	97,000	63,250	25.5	59.5	197					
	2	89,000	61,750	28.2	65.4	167					
	4	88,750	57,750	27.0	61.2	163					
Water-que	nched from	1575 F, temper	ed at 900 F.								
	1/2	166,500	161,000	16.4	61.0	331					
	1	161,000	137,500	14.7	54.4	321					
	2	132,750	110,250	19.0	63.0	269					
	4	121,500	95,000	20.5	63.6	241					
Water-que	nched from	1575 F, temper	ed at 1000 1	F.							
	1/2	151,000	142,500	18.1	63.9	302					
	1	144,500	129,500	18.5	61.8	293					
	2	121,750	98,750	21.2	66.3	241					
	4	116,000	91,500	21.5	63.5	235					
Water-que	nched from	1575 F, tempei	red at 1100	F							
	1/2	133,000	122,500	20.7	69.0	269					
	1	128,000	113,250	21.2	67.5	262					
	2	114,500	91,500	21.7	67.7	229					
	4	101,500	77,500	24.5	69.2	197					


As-quenched Hardness (water)

Size Round	Surface	½ Radius	Center
1/2	HRC 51	HRC 50	HRC 50
1	HRC 51	HRC 50	HRC 44
2	HRC 47	HRC 32	HRC 31
4	HRC 45.5	HRC 25	HRC 24.5

SINGLE HEAT RESULTS

	С	Мn	P	S						
Ladle	.30	.48	.015	.015	.20	.12	.91	.20	6-8	
	Critic	al Poi	nts, F:	Ac,	1400	Ac ₃	1510	Ar ₃	1400	Ar, 1305

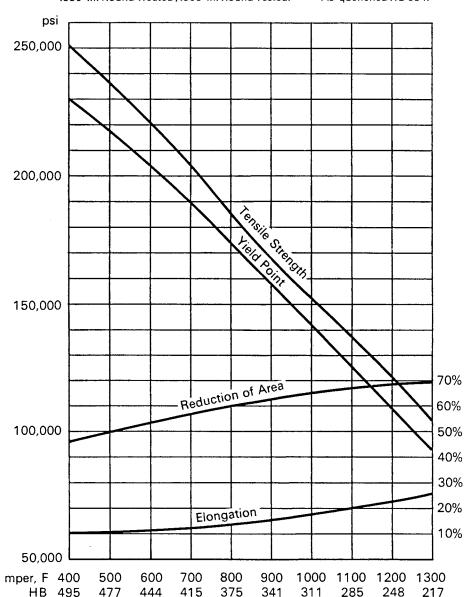
Treatment: Normalized at 1600 F; reheated to 1575 F; quenched in water. .530-in. Round Treated; 505-in. Round Tested. As-quenched HB 495.

SINGLE HEAT RESULTS

				_	Si			Мо	
Grade	.28/.33	.70/.90		_	.20/.35	.40/.70	.40/.60	.15/.25	Grain Size
Ladle	.29	.85	.012	.021	.25	.62	.44	.19	6-8

MASS EFFECT

	Size Round in.	Tensile Strength psi	Yield Point psi	Elongation % 2 in.	Reduction of Area, %	Hardness HB						
Annealed (Annealed (Heated to 1550 F, furnace-cooled 20 F per hour to 1155 F, cooled in air.)											
	1	81 <i>,</i> 750	54,000	29.0	58.9	156						
Normalized	Normalized (Heated to 1600 F, cooled in air.)											
	1/2	95,000	61,750	25.2	60.2	201						
	1	94,250	62,250	23.5	53.5	187						
	2	93,000	62,000	26.2	59.2	187						
	4	92,500	56,250	24.5	57.3	187						
Water-que	nched from	1550 F, temper	ed at 900 F.	•								
	1/2	152,250	150,500	16.4	59.4	302						
	1	146,750	131,750	16.2	56.5	293						
	2	129,750	107,250	19.2	63.7	269						
	4	113,000	86,000	21.2	64.7	235						
Water-que	nched from	1550 F, temper	ed at 1000	F.								
	1/2	139,250	132,500	18.9	58.1	285						
	1	134,750	123,000	18.7	59.6	269						
	2	120,250	100,000	21.2	65.6	235						
	4	107,250	82,500	23.0	63.0	217						
Water-que	nched from	1550 F, temper	ed at 1100	F.								
	1/2	134,500	132,000	19.2	61.0	269						
	1	118,000	101,250	18.7	58.2	241						
	2	111,250	89,000	22.5	68.6	223						
	4	96,000	72,250	25.5	68.1	197						


As-quenched Hardness (water)

Size Round	Surface	½ Radius	Center
1/2	HRC 52	HRC 49	HRC 47
1	HRC 52	HRC 48	HRC 43
2	HRC 51	HRC 31	HRC 30
4	HRC 47	HRC 25	HRC 22

SINGLE HEAT RESULTS

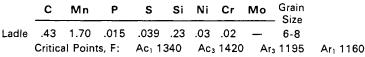
	С	Mn	Р				Cr			
Ladle	.30	.80	.018							
	Critic	al Poi	nts, F:	Ac ₁	1365	Aca	1465	Ar	1335	Ar ₁ 1205

Treatment: Normalized at 1600 F; reheated to 1550 F; quenched in water. .530-in. Round Treated; .505-in. Round Tested. As-quenched HB 534.

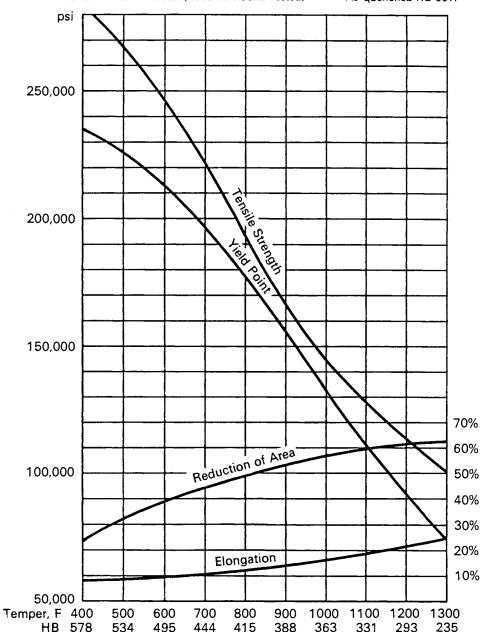
ALLOY STEEL OIL-HARDENING GRADES

1	
146	1340
148	4140
150	4340
152	5140
154	8740
156	4150
158	5150
160	6150
162	8650
164	9255
166	5160°

SINGLE HEAT RESULTS


	С	Mn	Р	S	Si	Ni	Cr	Мо	
Grade	.38/.43	1.60/1.90			.20/.35				Grain Size
Ladle	.40	1.77	.027	.016	.25	.10	.12	.01	6-8

MASS EFFECT


	Size Round in.	Tensile Strength psi	Yield Point psi	Elongation % 2 in.	Reduction of Area, %	Hardness HB
Annealed (Heated to 1	475 F, furnace-o	cooled 20 F	per hour to	1110 F, cod	oled in air.)
	1	102,000	63,250	25.5	57.3	207
Normalized	(Heated to	o 1600 F, cooled	d in air.)			
	1/2	132,000	81,500	20.0	51.0	269
	1	121,250	81,000	22.0	62.9	248
	2	120,000	76,250	23.5	61.0	235
	4	120,000	72,250	21.7	59.2	235
Oil-quench	ed from 15	25 F, tempered	at 1000 F.			
	1/2	142,500	131,500	18.8	55.2	285
	1	137,750	121,000	19.2	57.4	285
	2	120,500	84,250	21.2	60.7	248
	4	116,500	83,000	21.7	57.9	241
Oil-quench	ed from 15	25 F, tempered	at 1100 F.			
	1/2	127,000	118,000	21.0	57.9	255
	1	118,000	98,250	21.7	60.1	241
	2	108,750	82,250	24.7	64.3	217
	4	103,250	71,000	25.5	64.5	217
Oil-quench	ed from 15	25 F, tempered	at 1200 F.			
	1/2	118,500	108,500	22.1	59.5	241
	1	112,000	96,000	23.2	62.4	229
	2	105,750	79,500	25.5	66.2	217
	4	102,250	72,000	26.0	64.8	212

Size Round	Surface	½ Radius	Center
1/2	HRC 58	HRC 57	HRC 57
1	HRC 57	HRC 56	HRC 50
2	HRC 39	HRC 34	HRC 32
4	HRC 32	HRC 30	HRC 26

SINGLE HEAT RESULTS

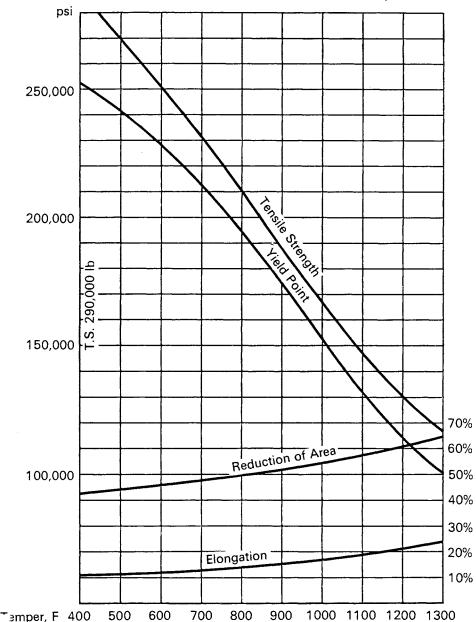
Treatment: Normalized at 1600 F; reheated to 1525 F; quenched in agitated oil. .565-in. Round Treated; .505-in. Round Tested. As-quenched HB 601.

SINGLE HEAT RESULTS

	С	Mn	P	S	Si	Ni	Cr	Мо	
Grade	.38/.43	.75/1.00	_		.20/.35		.80/1.10	.15/.25	Grain Size
Ladle	.40	.83	.012	.009	.26	.11	.94	.21	7-8

MASS EFFECT

5	Size Round in.	Tensile Strength psi	Yield Point psi	Elongation % 2 in.	Reduction of Area, %	Hardness HB
Annealed (H	eated to 1	500 F, furnace-o	cooled 20 F	per hour to	1230 F, cod	oled in air.)
	1	95,000	60,500	25.7	56.9	197
Normalized ((Heated to	1600 F, cooled	d in air.)			
	1/2	148,500	98,500	17.8	48.2	302
	1	148,000	95,000	17.7	46.8	302
	2	140,750	91,750	16.5	48.1	285
	4	117,500	69,500	22.2	57.4	241
Oil-quenche	d from 15	50 F, tempered	at 1000 F.			
	1/2	171,500	161,000	15.4	55.7	341
	1	156,000	143,250	15.5	56.9	311
	2	139,750	115,750	17.5	59.8	285
	4	127,750	99,250	19.2	60.4	277
Oil-quenche	d from 15	50 F, tempered	at 1100 F.			
	1/2	157,500	148,750	18.1 ·	59.4	321
*	1	140,250	135,000	19.5	62.3	285
	2	127,500	102,750	21.7	65.0	262
	4	116,750	87,000	21.5	62.1	235
Oil-quenche	d from 15	50 F, tempered	at 1200 F.			
	1/2	136,500	128,750	19.9	62.3	277
	1	132,750	122,500	21.0	65.0	269
	2	121,500	98,250	23.2	65.8	241
	4	112,500	83,500	23.2	64.9	229


Size Round	Surface	½ Radius	Center
1/2	HRC 57	HRC 56	HRC 55
1	HRC 55	HRC 55	HRC 50
2	HRC 49	HRC 43	HRC 38
4	HRC 36	HRC 34.5	HRC 34

SINGLE HEAT RESULTS

	С	Мn	Р				Cr			
Ladle	.41	.85	.024	.031	.20	.12	1.01	.24	6-8	
	Critic	cal Poi	nts. F:	Acı	1395	Α	c ₃ 145	0 A	ra 1330	Arı 1

r₁ 1395 Ac₃ 1450 Ar₃ 1330 Ar₁ 1280

Treatment: Normalized at 1600 F; reheated to 1550 F; quenched in agitated oil. .530-in. Round Treated; .505-in. Round Tested. As-quenched HB 601.

HB 578

534

495

461

429

388

341

311

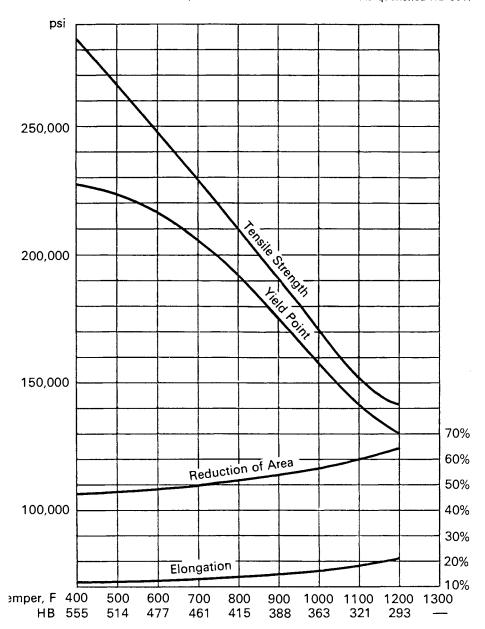
277

235

SINGLE HEAT RESULTS

	_		-	_		Ni		Мо	
Grade	.38/.43	.60/.80		_	.20/.35	1.65/2.00	.70/.90	.20/.30	Grain Size
Ladle	.40	.68	.020	.013	.28	1.87	.74	.25	7-8

MASS EFFECT


Size Round in.	Tensile Strength psi	Yield Point psi	Elongation % 2 in.	Reduction of Area, %	Hardness HB
Annealed (Heated to 1	490 F, furnace-o	cooled 20 F	per hour to	670 F, coo	led in air.)
1	108,000	68,500	22.0	49.9	217
Normalized (Heated to	1600 F, cooled	l in air.)			
1/2	209,500	141,000	12.1	35.3	388
1	185,500	125,000	12.2	36.3	363
2	176,750	114,500	13.5	37.3	341
4	161,000	103,000	13.2	36.0	321
Oil-quenched from 14	75, tempered at	1000 F.			
1/2	182,000	169,000	13.7	45.0	363
1	175,000	166,000	14.2	45.9	352
2	170,000	159,500	16.0	54.8	341
4	164,750	145,250	15.5	53.4	331
Oil-quenched from 14	75 F, tempered	at 1100 F.			
1/2	165,750	162,000	17.1	57.0	331
1	164,750	159,000	16.5	54.1	331
2	147,250	139,250	19.0	60.4	293
4	133,750	114,500	19.7	60.7	269
Oil-quenched from 14	75 F, tempered	at 1200 F.			
1/2	145,000	135,500	20.0	59.3	285
1	139,000	128,000	20.0	59.7	277
2	134,750	121,000	20.5	62.5	269
4	124,000	105,750	21.7	63.0	255

Size Round	Surface	1/2 Radius	Center
1/2	HRC 58	HRC 58	HRC 56
1	HRC 57	HRC 57	HRC 56
2	HRC 56	HRC 55	HRC 54
4	HRC 53	HRC 49	HRC 47

SINGLE HEAT RESULTS

	С	Mn	Р				Cr			
Ladle	.41	.67							••	
	Critic	cal Poi	nts, F:	Αcι	1350	Ac:	1415	Ar	3 890	Ar: 720

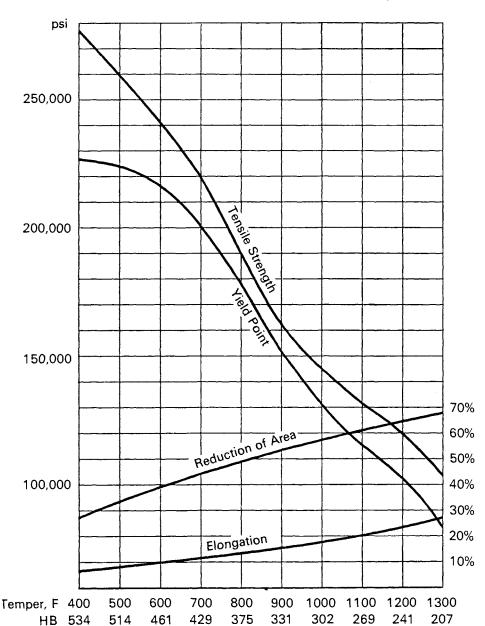
Treatment: Normalized at 1600 F; reheated to 1475 F; quenched in agitated oil. .530-in. Round Treated; .505-in. Round Tested. As-quenched HB 601.

SINGLE HEAT RESULTS

	С	Mn	Р	S	Si	Ni	Cr	Мо	
Grade	.38/.43	.70/.90	_	_	.20/.35		.70/.90	_	Grain Size
Ladle	.43	.78	.020	.033	.22	.06	.74	.01	6-8

MASS EFFECT

Si	ize Round in.	Tensile Strength psi	Yield Point psi	Elongation % 2 in.	Reduction of Area, %	Hardness HB					
Annealed (Heated to 1525 F, furnace-cooled 20 F per hour to 1200 F, cooled in air.)											
	1	83,000	42,500	28.6	57.3	167					
Normalized (Heated to 1600 F, cooled in air.)											
	1/2	120,000	75,500	22.0	62.3	235					
	1	115,000	68,500	22.7	59.2	229					
	2	113,000	65,500	21.8	55.8	223					
	4	111,400	60,375	21.6	52.3	217					
Oil-quenched	from 15	50 F, tempered	at 1000 F.								
	1/2	146,750	131,500	17.8	57.1	302					
	1	141,000	121,500	18.5	58.9	293					
	2	128,000	100,500	19.7	59.1	255					
	4	125,000	81,500	20.2	55.4	248					
Oil-quenched	from 15	50 F, tempered	at 1100 F.								
	1/2	130,500	113,000	20.2	61.4	269					
	1	127,250	105,000	20.5	61.7	262					
	2	118,000	89,000	22.0	63.2	241					
	4	115,500	73,500	22.1	59.0	235					
Oil-quenched	from 1 5	50 F, tempered	at 1200 F.								
	1/2	120,000	102,000	22.2	63.4	241					
	1	117,000	94,500	22.5	63.5	235					
	2	109,500	81,500	24.5	67.1	223					
	4	106,000	68,000	24.6	63.1	217					


Size Round	Surface	½ Radius	Center
1/2	HRC 57	HRC 57	HRC 56
1	HRC 53	HRC 48	HRC 45
2	HRC 46	HRC 38	HRC 35
4	HRC 35	HRC 29	HRC 20

153

SINGLE HEAT RESULTS

	С	Mn	Р	S	Si	Ni	Cr	Мо	Grain Size	
Ladie	.43	.78	.020	.033	.22	.06	.74	.01	6-8	
	Critic	al Poi	nts, F:	Ac ₁ 1	1370	Ac ₃	1440	Ar	3 1320	Ar: 1260

Treatment: Normalized at 1600 F; reheated to 1550 F; quenched in agitated oil. .530-in. Round Treated; .505-in. Round Tested. As-quenched HB 601.

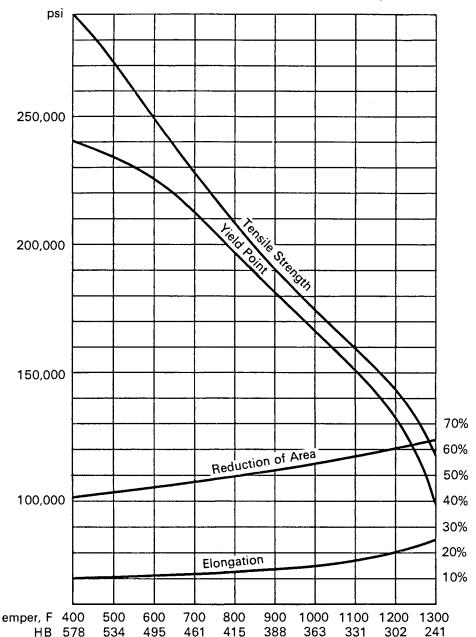
SINGLE HEAT RESULTS

	С		-	_	Si		Cr	Мо	
Grade	.38/.43	.75/1.00			.20/.35	.40/.70	.40/.60	.20/.30	Grain Size
Ladle	.41	.90	.016	.010	.25	63	.53	.29	7-8

MASS EFFECT

	Size Round in.	Tensile Strength psi	Yield Point psi	Elongation % 2 in.	Reduction of Area, %	Hardness HB
Annealed (Heated to 1	500 F, furnace-d	cooled 20 F	per hour to	1100 F, cod	oled in air.)
	1	100,750	60,250	22.2	46.4	201
Normalized	I (Heated to	1600 F, cooled	d in air.)			
	1/2	135,500	89,500	16.0	47.1	269
	1	134,750	88,000	16.0	47.9	269
	2	132,000	87,500	16.7	50.1	262
	4	132,000	87,000	15.5	46.1	255
Oil-quench	ed from 15	25 F, tempered	at 1000 F.			
	1/2	179,000	165,000	13.5	47.4	352
	1	178,500	164,250	16.0	53.0	352
	2	170,750	153,500	15.7	52.8	331
	4	138,750	108,500	18.0	55.6	277
Oil-quench	ed from 15	25 F, tempered	at 1100 F.			
	1/2	153,500	139,500	17.4	55.1	311
	1	149,250	134,500	18.2	59.9	302
	2	142,500	122,500	18.5	62.0	277
	4	123,750	96,750	20.5	59.8	248
Oil-quench	ed from 15	25 F, tempered	at 1200 F.			
	1/2	140,000	127,250	19.9	60.7	285
	1	138,000	123,000	20.0	60.7	285
	2	127,250	105,750	21.5	65.4	255
	4	115,500	88,250	22.7	62.9	229

Size Round	Surface	½ Radius	Center
1/2	HRC 57	HRC 56	HRC 55
1	HRC 56	HRC 55	HRC 54
2	HRC 52	HRC 49	HRC 45
4	HRC 42	HRC 37	HRC 36


SINGLE HEAT RESULTS

 C
 Mn
 P
 S
 Si
 Ni
 Cr
 Mo
 Grain Size

 Ladle
 .39
 1.00
 .012
 .017
 .25
 .53
 .52
 .28
 6-8

Critical Points, F: Ac₁ 1370 Ac₃ 1435 Ar₃ 1265 Ar₁ 1160

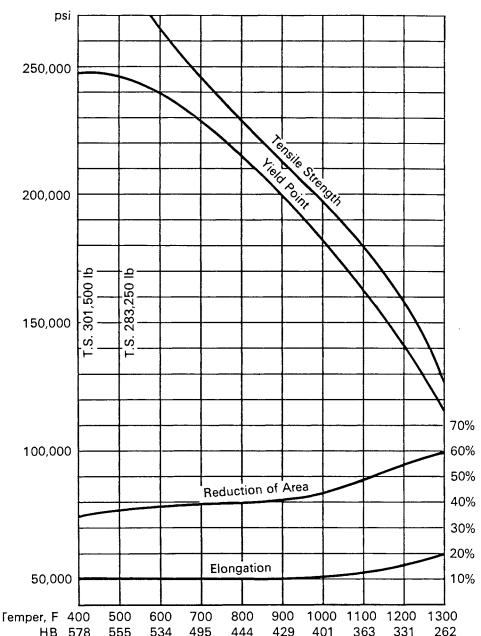
Treatment: Normalized at 1600 F; reheated to 1525 F; quenched in agitated oil. .565-in. Round Treated; .505-in. Round Tested. As-quenched HB 601.

SINGLE HEAT RESULTS

	С	Mn	P	-	Si	Ni	Cr	Мо	
Grade	.48/.53	.75/1.00			.20/.35		.80/1.10	.15/.25	Grain Size
Ladle	.51	.89	.018	.017	.27	.12	.87	.18	95% 7-8 5% 5

MASS EFFECT

	Size Round in.	Tensile Strength psi	Yield Point psi	Elongation % 2 in.	Reduction of Area, %	Hardness HB						
Annealed (Annealed (Heated to 1525 F, furnace-cooled 20 F per hour to 1190 F, cooled in air.)											
	1	105,750	55,000	20.2	40.2	197						
Normalized (Heated to 1600 F, cooled in air.)												
	1/2	194,000	129,500	10.0	24.8	375						
	1	167,500	106,500	11.7	30.8	321						
	2	158,750	104,000	13.5	40.6	311						
	4	146,000	91,750	19.5	56.5	293						
Oil-quench	ned from 152	5 F, tempered	at 1000 F.									
	1/2	189,500	176,250	13.5	47.2	375						
	1	175,250	159,500	14.0	46.5	352						
	2	168,750	151,000	15.5	51.0	341						
	4	158,750	127,750	15.0	46.7	311						
Oil-quench	ned from 152	5 F, tempered	at 1100 F.									
	1/2	170,000	155,500	14.6	45.5	341						
	1	165,500	150,000	15.7	51.1	331						
	2	150,250	131,500	18.7	56.4	302						
	4	132,500	98,250	20.0	57.5	269						
Oil-quench	ned from 152	5 F, tempered	at 1200 F.									
	1/2	148,000	137,250	17.4	53.3	302						
	1	141,000	127,500	18.7	55.7	285						
	2	134,750	118,250	20.5	60.0	269						
	4	124,000	91,000	21.5	61.4	255						


Size Round	Surface	1/2 Radius	Center
1/2	HRC 64	HRC 64	HRC 63
1	HRC 62	HRC 62	HRC 62
2	HRC 58	HRC 57	HRC 56
4	HRC 47	HRC 43	HRC 42

SINGLE HEAT RESULTS

C Mn P S Si Ni Cr Mo Grain Size Ladle .50 .76 .015 .012 .21 .20 .95 .21 90% 7-8

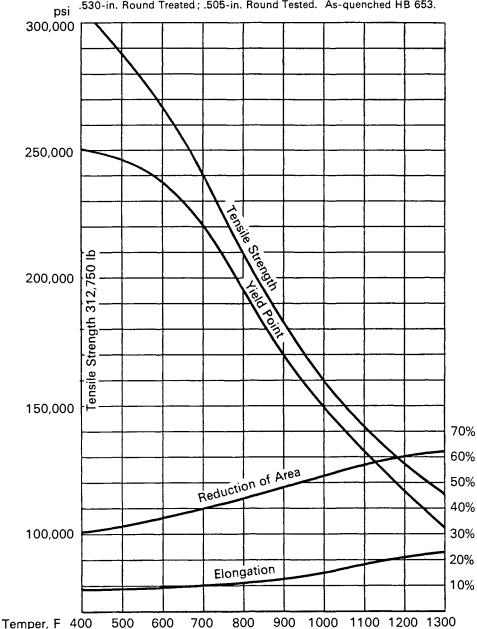
Critical Points, F: Ac₁ 1390 Ac₃ 1450 Ar₃ 1290 Ar₁ 1245

Treatment: Normalized at 1600 F; reheated to 1525 F; quenched in agitated oil. .530-in. Round Treated; .505-in. Round Tested. As-quenched HB 656.

SINGLE HEAT RESULTS

	С	Mn	P	S	Si	Ni	Cr	Мо	
Grade	.48/.53	.70/.90	_	_	.20/.35	_	.70/.90	_	Grain Size
Ladle	.49	.75	.018	.018	.25	.11	80	05	7-8

MASS EFFECT


	Size Round in.	Tensile Strength psi	Yield Point psi	Elongation % 2 in.	Reduction of Area, %	Hardness HB
Annealed (Heated to 1	520 F, furnace-	cooled 20 F	per hour to	1190 F, cod	oled in air.)
	1	98,000	51,750	22.0	43.7	197
Normalized	(Heated to	1600 F, coole	d in air.)			
	1/2	131,000	81,500	21.0	60.6	262
	1	126,250	76,750	20.7	58.7	255
	2	123,000	72,500	20.0	53.3	248
	4	122,000	63,000	18.2	48.2	241
Oil-quench	ed from 15	25 F, tempered	at 1000 F.			
	1/2	158,750	145,250	16.4	52.9	311
	1	153,000	131,750	17.0	54.1	302
	2	132,000	96,750	18.5	55.5	255
	4	125,000	85,750	20.0	57.5	248
Oil-quench	ed from 15	25 F, tempered	at 1100 F.			
	1/2	144,000	131,000	19.2	55.2	285
	1	137,000	115,250	20.2	59.5	277
	2	126,750	87,250	20.0	58.8	255
	4	120,000	80,500	19.7	56.4	241
Oil-quench	ed from 15	25 F, tempered	at 1200 F.			
	1/2	135,500	121,000	21.7	59.7	269
	1	128,000	108,000	21.2	61.9	255
	2	118,750	88,500	22.7	63.0	241
	4	115,000	75,500	21.5	60.8	235

Size Round	Surface	1/2 Radius	Center		
1/2	HRC 60	HRC 60	HRC 59		
1	HRC 59	HRC 52	HRC 50		
2	HRC 55	HRC 44	HRC 40		
4	HRC 37	HRC 31	HRC 29		

SINGLE HEAT RESULTS

Mo Grain C Si Ni Cr Mn Size Ladie .49 .75 .018 .018 .25 .11 .80 .05 7-8 Ar₃ 1310 Critical Points, F: Ac₁ 1345 Ac₃ 1445 Ar₁ 1240

Treatment: Normalized at 1600 F; reheated to 1525 F; quenched in oil. .530-in. Round Treated; .505-in. Round Tested. As-quenched HB 653.

363

415

HB 601

555

514

461

321

293

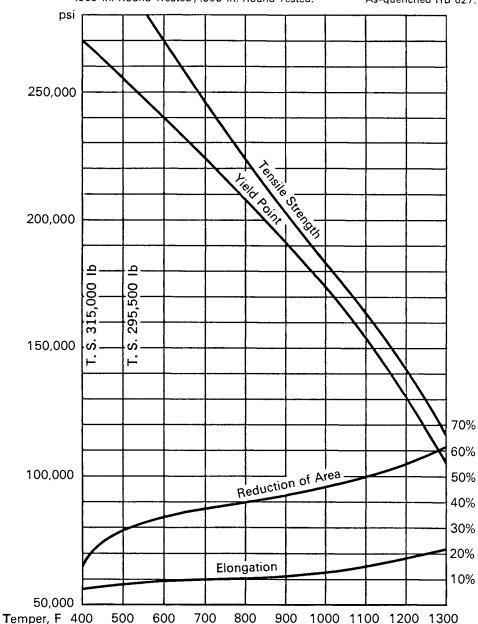
269

241

SINGLE HEAT RESULTS

	С	Mn	Р	S	Si	Ni	Cr	Мо	V	
Grade	.48/.53	.70/.90	_	_	.20/.35		.80/1.10		.15 min	Grain Size
Ladle	.51	.80	.014	.015	.35	.11	.95	.01	.18	70% 5-6 30% 2-4

MASS EFFECT


	Size Round in.	Tensile Strength psi	Yield Point psi	Elongation % 2 in.	Reduction of Area, %	Hardness HB					
Annealed (Heated to 1	500 F, furnace-o	cooled 20 F	per hour to	1240 F, cod	oled in air.)					
	1	96,750	59,750	23.0	48.4	197					
Normalized	(Heated to	o 1600 F, cooled	d in air.)								
	1/2	141,250	93,000	20.6	63.0	285					
	1	136,250	89,250	21.8	61.0	269					
	2	129,750	75,250	20.7	56.5	262					
	4	128,000	67,000	18.2	49.6	255					
Oil-quench	Oil-quenched from 1550 F, tempered at 1000 F.										
	1/2	179,500	177,750	14.6	49.4	363					
	1	173,500	167,750	14.5	48.2	352					
	2	166,000	145,250	14.5	46.7	331					
	4	151,500	127,000	16.0	48.7	302					
Oil-quench	ed from 15	50 F, tempered	at 1100 F.								
	1/2	160,000	158,500	16.4	52.3	321					
	1	158,250	150,500	16.0	53.2	311					
	2	148,250	131,750	17.7	55.2	293					
	4	130,000	108,500	19.0	55.4	262					
Oil-quench	ed from 15	50 F, tempered	at 1200 F.								
	1/2	147,000	141,500	17.8	53.9	293					
	1	141,250	129,500	18.7	56.3	293					
	2	133,750	116,500	19.5	57.4	269					
	4	121,500	94,500	21.0	59.7	241					

Size Round	Surface	½ Radius	Center
1/2	HRC 61	HRC 60	HRC 60
1	HRC 60	HRC 58	HRC 57
2	HRC 54	HRC 47	HRC 44
4	HRC 42	HRC 36	HRC 35

SINGLE HEAT RESULTS

Treatment: Normalized at 1600 F; reheated to 1550 F; quenched in agitated oil. .565-in. Round Treated; .505-in. Round Tested.

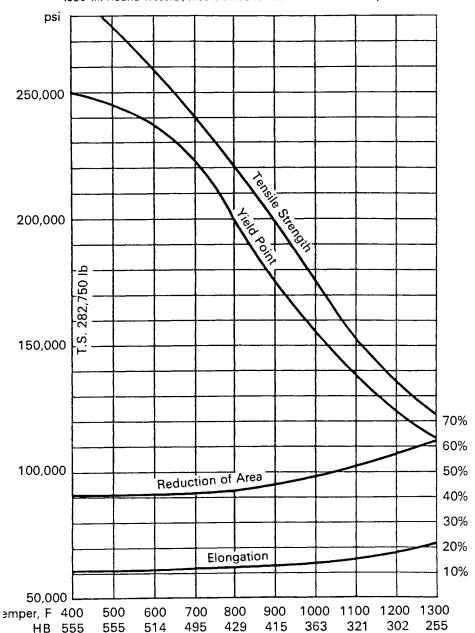
As-quenched HB 627.

HB 601

SINGLE HEAT RESULTS

	С		-	-	Si			Мо	
Grade	.48/.53	.75/1.00	_	_	.20/.35	.40/.70	.40/.60	.15/.25	Grain Size
Ladle	.48	.86	.020	.016	.31	.58	.53	.24	6-8

MASS EFFECT

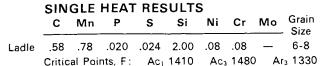

	Size Round in.	Tensile Strength psi	Yield Point psi	Elongation % 2 in.	Reduction of Area, %	Hardness HB					
Annealed ((Heated to 1	465 F, furnace-	cooled 20 F	per hour to	860 F, coc	led in air.)					
	1	103,750	56,000	22.5	46.4	212					
Normalized	d (Heated to	1600 F, cooled	d in air.)								
	25.3	363									
	1	148,500	99,750	14.0	40.4	302					
	2	144,250	95,750	15.5	44.8	293					
	4	139,250	93,250	15.0	40.5	285					
Oil-quench	Oil-quenched from 1475 F, tempered at 1000 F.										
	1/2	177,500	168,750	14.6	48.2	363					
	1	172,500	159,750	14.5	49.1	352					
	2	165,250	148,500	17.0	55.6	331					
	4	143,250	113,000	18.7	54.9	285					
Oil-quench	ned from 14	75 F, tempered	at 1100 F.								
	1/2	154,500	151,000	17.8	54.9	321					
	1	153,500	142,750	17.7	57.3	311					
	2	145,000	131,000	20.0	61.0	293					
	4	126,250	98,500	22.0	61.2	255					
Oil-quench	ned from 14	75 F, tempered	at 1200 F.								
	1/2	148,000	137,000	18.5	54.8	293					
	1	141,000	132,000	19.5	59.8	285					
	2	135,250	121,000	21.2	62.3	277					
	4	121,750	94,000	22.5	59.8	241					

Surface	½ Radius	Center		
HRC 61	HRC 61	HRC 61		
HRC 58	HRC 58	HRC 57		
HRC 53	HRC 53	HRC 52		
HRC 42	HRC 39	HRC 38		
	HRC 61 HRC 58 HRC 53	HRC 61 HRC 61 HRC 58 HRC 58 HRC 53 HRC 53		

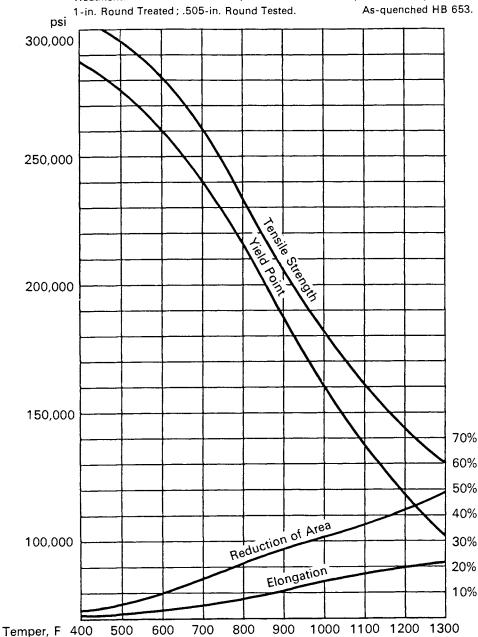
SINGLE HEAT RESULTS

	С	Mn	Р	s	Si	Ni	Cr	Мо	Grain Size	
Ladle	.51	.80	.018	.019	.24	.53	.52	.25	6-8	
	Critic	al Poi	nts, F:	Acı 1	1325	Ac ₃	1390	Ara	1230	Ar ₁ 910

Treatment: Normalized at 1600 F; reheated to 1475 F; quenched in agitated oil. .530-in. Round Treated; .505-in. Round Tested. As-quenched HB 638.


SINGLE HEAT RESULTS

	С	Mn	P	S	Si	Ni	Cr	Мо	
Grade	.51/.59	.70/.95		-	1.80/2.20		_	_	Grain Size
Ladle	.52	.75	.024	.016	2.20	.07	.12	.01	6-8


MASS EFFECT

	Size Round in.	Tensile Strength psi	Yield Point psi	Elongation % 2 in.	Reduction of Area, %	Hardness HB				
Annealed (I	Heated to 1	550 F, furnace-o	cooled 20 F	per hour to	1220 F, cod	oled in air.)				
	1	112,750	70,500	21.7	41.1	229				
Normalized	(Heated to	1650 F, cooled	d in air.)							
	1/2	137,500	85,250	20.0	45.5	277				
	1 ·	135,250	84,000	19.7	43.4	269				
	2	135,000	82,000	19.5	39.5	269				
	4	133,000	79,500	18.7	36.1	269				
Oil-quenched from 1625 F, tempered at 1000 F.										
	1/2	170,000	146,500	14.9	40.0	331				
	1	164,250	133,750	16.7	38.3	321				
	2	154,750	102,500	18.0	45.6	302				
	4	149,000	94,000	19.2	43.7	293				
Oil-quench	ed from 16	25 F, tempered	at 1100 F.							
	1/2	155,000	132,250	18.1	45.3	302				
	1	150,000	118,000	19.2	44.8	293				
	2	145,500	91,750	20.0	48.7	293				
	4	137,000	83,000	21.0	46.0	277				
Oil-quench	ed from 16	25 F, tempered	at 1200 F.							
	1/2	144,750	123,000	21.0	50.4	285				
	1	138,000	106,500	21.2	48.2	277				
	2	137,500	87,250	21.0	50.7	277				
	4	132,250	81,750	21.7	48.3	262				

Size Round	Surface	½ Radius	Center
1/2	HRC 61	HRC 59	HRC 58
1	HRC 57	HRC 55	HRC 48
2	HRC 52	HRC 37	HRC 33
4	HRC 35.5	HRC 31.5	HRC 27.5

Treatment: Normalized at 1650 F; reheated to 1625 F; quenched in agitated oil.

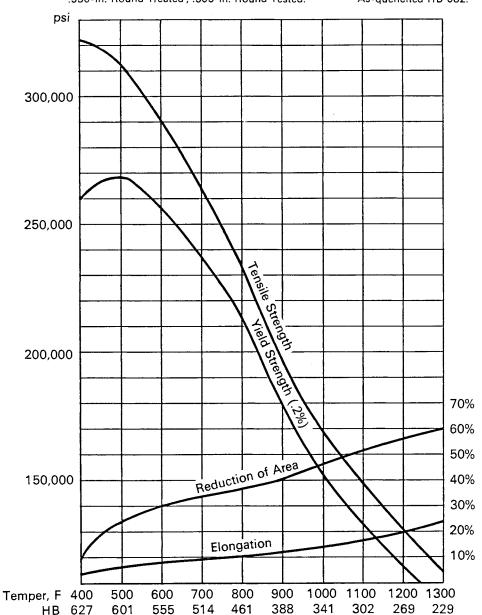
HB 601

SINGLE HEAT RESULTS

	С	Mn	P	S	Si	Ni	Cr	Мо	
Grade	.56/.64	.75/1.00			.20/.30		.70/.90	_	Grain Size
Ladle	.62	.84	.010	.034	.24	.04	.74	.01	6-8

MASS EFFECT

	Size Round in.	Tensile Streng psi	th Yield Strength I (.2% Offset) psi		Reduction of Area, %	Hardness HB
Annealed (Heated to 14	495 F, furna	ce-cooled 20 F p	er hour to	900 F, coo	led in air.)
	1	104,750	40,000	17.2	30.6	197
Normalized	(Heated to	1575 F, cod	oled in air.)			
	1/2	149,000	93,750	18.2	50.7	285
	1	138,750	77,000	17.5	44.8	269
	2	133,750	73,500	16.0	39.0	262
	4	133,500	70,250	14.8	34.2	255
Oil-quench	ed from 152	25 F, temper	ed at 1000 F.			
	1/2	170,500	155,250	14.2	45.1	341
	1	165,500	145,500	14.5	45.7	341
	2	154,250	102,250	17.8	51.2	293
	4	140,500	101,750	18.5	52.0	285
Oil-quench	ed from 152	25 F, temper	ed at 1100 F.			
	1/2	152,250	134,000	16.6	50.6	302
	1	145,250	126,000	18.0	53.6	302
	2	135,250	91,750	20.0	54.6	277
	4	129,250	89,250	21.2	57.0	262
Oil-quench	ed from 152	25 F, temper	ed at 1200 F.			
	1/2	133,000	115,250	19.8	55.5	269
	1	128,750	110,750	20.7	55.6	262
	2	113,250	84,000	21.8	57.5	248
	4	120,500	77,750	22.8	60.8	241


Size Round	Surface	½ Radius	Center		
1/2	HRC 63	HRC 62	HRC 62		
1	HRC 62	HRC 61	HRC 60		
2	HRC 53	HRC 46	HRC 43		
4	HRC 40	HRC 32	HRC 29		

SINGLE HEAT RESULTS

Mo Grain С Mn S Si Ni Cr Size .010 .034 .24 .04 .74 Ladle .62 .84 .01 6-8 Critical Points, F: Ac₁ 1380 Ac₃ 1420 Ar₃ 1310

Treatment: Normalized at 1575 F; reheated to 1525 F; quenched in oil.

.530-in. Round Treated; .505-in. Round Tested. As-quenched HB 682.

MACHINABILITY OF STEEL

Among the many practical methods of shaping steel, machining is perhaps the most widely employed, both alone and in conjunction with such other methods as forging, extrusion, and cold-heading.

The term, *machinability*, is most often used to describe the performance of metals in machining. By its simplest definition, it is the ability to be cut by an appropriate tool; but notwithstanding the simplicity, there appear to be no fundamental units by which this ability can be measured. Machining performance is therefore generally expressed in relative terms which compare the response of one material to that of a standard in a similar machining operation and employing similar performance criteria.

Machinability Testing

Over a period of many years, Bethlehem has conducted almost continuous machinability studies involving hundreds of tests run on multiple-spindle automatic bar machines of the types commonly used in industry. This approach has clearly shown that the machining performances of different steels can be truly compared only when the production conditions for each steel satisfy two basic similarity requirements:

- 1) The *level of product quality* with respect to surface finish and dimensions must be *similar* among the steels being evaluated;
- 2) The duration of average tool life must also be similar to that of the other steels being evaluated. Six to eight hours of actual running time is the preferable duration.

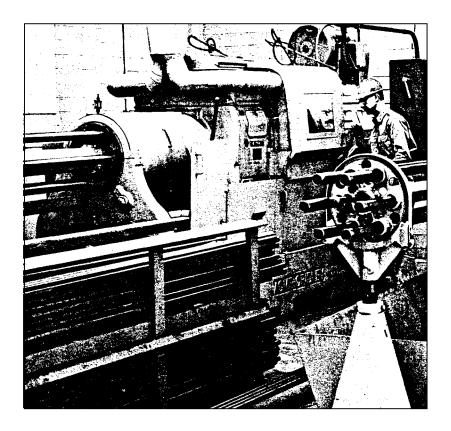
Under these conditions, machinability can be rated by comparing either the maximum production rates achieved with each steel, or the cutting speeds used to attain these rates. Historically, the cutting-speed method of rating has been more commonly employed; yet, this method does not include the equally important effect of tool feed rate on production. As a consequence, it can overlook the contributions of some elements, notably nitrogen and phosphorus, which augment production by permitting the use of higher feed rates. This

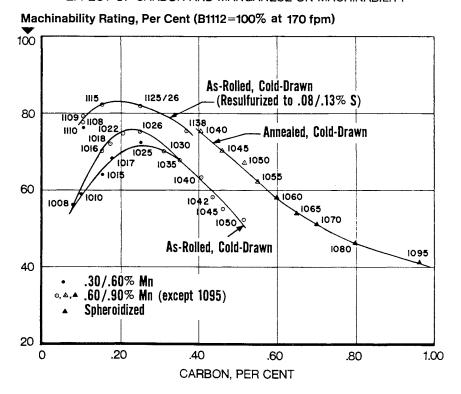
problem is avoided when machinability comparisons are based on maximum production rates consistent with the basic similarity requirements, inasmuch as this method automatically considers both cutting speed and tool feed rate.

Free-cutting steels, comprising the 1200 and 1100 series, find their greatest application in the manufacture of parts requiring extensive machining into shapes of varying complexity on automatic bar machines. Within the composition ranges of the 1200 series, the elements which most affect machining performance are sulfur, phosphorus, nitrogen, lead, and selenium; in the 1100 series, sulfur and carbon are major variables, with manganese exerting a secondary but significant influence.

Sulfur

Increasing sulfur improves machining performance at all carbon levels in both alloy and plain carbon grades. Small increases in sulfur up to .05/.06% markedly improve the machinability of a nonresulfurized base. For increases above this level, machinability improves at a lower rate. In the case of the 1200 and 1100 series steels, the rate of improvement caused by increasing sulfur is somewhat higher in steels with the lower carbon contents.


Phosphorus and Nitrogen


One of the distinguishing features of the very free-cutting grades is their ability to be machined at higher production rates while maintaining the desired finish on the product. But even in these grades, the quality of the machined surface varies with composition. Phosphorus and nitrogen can be added to free-machining grades of steel to enhance machining performance. Both increase hardness and tensile strength, particularly in the cold-drawn condition. Actual tests as described above have established that the machinability of the 1200 series steels, as measured by relative production rates for equal part quality and tool life, is markedly improved by increasing phosphorus content to within the range of .07/.12%. Further improvement is realized when nitrogen content is increased to a level of about .010%. The ability to use higher speeds and feeds with increasing phosphorus and nitrogen contents (within the stated limits) is re-

lated to the decreased size and more controllable behavior of the built-up-edge on the cutting tools. This control of the built-up-edge results in an improvement of surface finish.

Lead Additions

The machining performance of steel is considerably improved by the addition of lead (see page 23) in the usual specification range of .15/.35%. Lead lubricates the cutting edge of the tool and permits an increase in cutting speed and feed and an improvement in surface finish quality without an attendant decrease in tool life. As a result, lead additions can be expected to improve production rates—in screw-machine operations in particular—by some 20 to 40 per cent.

Carbon and Manganese

Plain carbon steels with very low carbon contents tend to be tough and gummy in machining operations. Increases in carbon and manganese increase the strength and hardness of steel and result in improved surface finish and chip character. For carbon contents up to .20/.25%, this results in improved machinability for both hotrolled and cold-drawn steels. As the carbon is increased above this level, however, hardness increases to the point where tool life is adversely affected, leading to a decrease in the machinability rating.

The graph above illustrates this effect by plotting machinability ratings for a series of grades with increasing carbon contents at two manganese levels. Note also how the machinability ratings of 1040, 1045, and 1050 were significantly improved by annealing.

Most carbon steels below .35% carbon are machined in the as-rolled or as-rolled, cold-drawn condition. Higher carbon grades are frequently annealed to improve machinability, particularly when they are to be cold-drawn prior to machining.

Alloy Steels

The commonly used alloying elements increase the as-rolled strength and hardness in comparison with a plain carbon steel of equivalent carbon content. The intensity of this effect on hardness differs for the various elements; but in all cases, hardness increases with increasing percentages of the element. In the as-rolled condition, the leaner alloys machine more like their plain carbon counterparts than do the more highly alloyed types. For example, 4023 behaves about the same as 1022 or 1026 under the cutting tool, whereas the more highly alloyed 8620 has about the same machinability as the higher-carbon 1040. Accordingly, it is common practice to thermally treat alloy bars prior to cold-drawing and machining.

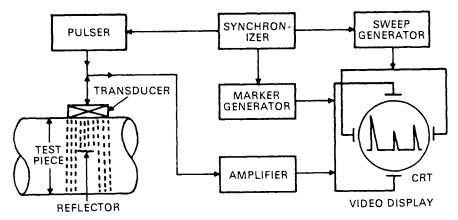
Normalizing is sometimes used for the lower carbon grades, but annealing is more frequently used because it results in lower hardness. Optimum microstructure varies with the per cent of pearlite typical of the composition involved, and to a degree, with the parameters of the machining operation itself. In general, a lamellar annealed structure is preferred in the low and medium carbon ranges, or up to the carbon level of about .40/.50% which corresponds to -approximately 90% pearlite, depending on both carbon and alloy content. Above that carbon level, a spheroidized structure is usually preferred because it improves tool life, although at some sacrifice of surface finish. Where machined finish is of paramount importance in these higher carbon grades, it is sometimes desirable to use a lamellar structure and accept a somewhat shorter tool life. For certain machining operations, a compromise structure consisting of lamellar pearlite with some spheroidized carbides may be desirable. Since alloying elements increase the percentage of pearlite in the microstructure of a given carbon level over that typical of plain carbon steels, determination of the optimum microstructure must take into consideration the carbon level and the alloy content.

NONDESTRUCTIVE EXAMINATION

Nondestructive tests are effective for the inspection of the surface or internal quality of steel products, supplementing or replacing visual methods of inspection. In general, for bar and billet testing, ultrasonic methods are used for internal inspection, and magnetic particle and eddy current methods for the inspection of surface.

Ultrasonic Testing

Ultrasonic testing is based upon ultra-sound, or sound which is pitched too high (above 20,000 cps) for the human ear to detect. Pulses of this sound energy are sent into a section of a material, such as a steel bar, and are reflected from the boundaries of the section as well as from internal discontinuities. The reflected pulses are received and portrayed on a cathode ray tube, and the image interpreted with respect to the strength of the returning pulse and the time lapse between its generation and reception.

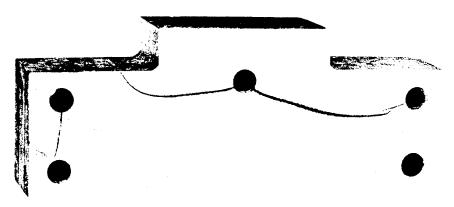

With proper calibration of the test equipment, the location, size, shape and orientation of discontinuities within the steel can be estimated. Two basic calibration methods are used to provide standards for the test against which the received signals can be compared. In one, the standard is provided by signals from a reference reflector, such as a notch or hole in a test block. In the second, the standard is derived from the signal reflected from the far side of the steel section. Some discontinuities are not good reflectors, but can be detected by their shadowing effect which results in a partial or total loss of this back reflection signal.

PULSE ECHO ULTRASONIC SYSTEM. Ultrasonic test systems are based upon the behavior of piezoelectric material which, when excited electrically, is caused to vibrate mechanically with ultrasonic energy. Conversely, an electrical voltage is generated when this material, or crystal, is vibrated. The holder containing the crystal

and its associated electrical components is called a transducer, or search unit, and is one of the major elements of the test system. Another essential part of the overall unit is the electronic package which functions as the control center. This instrument generates a brief power output, or pulse, that excites the crystal. It also receives and amplifies the voltage generated as a result of reflected sound vibrating the crystal.

Both the exciting pulse and any echoes are displayed on a cathode ray tube. Since sound travels at a constant speed in a specific material under constant conditions, distance within a material is a function of time. Thus, distance (time) is represented on the horizontal axis of the tube, and signal amplitudes (exciting pulse and echoes) on the vertical axis. The magnitude of the echo will depend upon several external factors including the operating frequency, which is usually between 1 and 10 MHz (1MHz=1 million cycles per second), the amount of beam dispersion, the surface condition and internal metallurgical structure of the steel, the amount of hot or cold working of the steel, temperatures, and variables associated with transducer and instrument characteristics. With these variables relatively constant, the reflected signal amplitude will be dependent upon the following material characteristics:

• the area of the reflector, which may be a discontinuity or boundary, its shape and orientation to the ultrasonic path, plus its roughness;



Pulse-echo ultrasonic system.

- the distance of the reflector from the search unit;
- the acoustic impedance of the reflector.

It should be noted that the ultrasonic vibrations are normally directed into the test piece through a suitable coupling medium such as water, glycerin, or oil to prevent the high energy losses that would occur in air transmission.

Electromagnetic Test Methods

Magnetic particle indications of quench cracks.

In a ferromagnetic material that has been magnetized, the normal lines of magnetic force are distrupted by discontinuities within the otherwise homogenous microstructure of the material, thus causing localized force gradients. Fine magnetic particles are attracted to these field gradients; and so provide a measure of the geometry and extent of the discontinuity.

Many variations of magnetic particle testing are employed in practice depending upon the type of anticipated discontinuity and its location. Results are affected by the type of current used (a.c. or d.c.) and its magnitude and duration, the direction of magnetization, and the wet or dry condition of the indicating particles.

For bars and billets, circular magnetization is most frequently used to facilitate the detection of longitudinal discontinuities such as laps or seams. This type of field is created when the current is passed longitudinally through the material itself. Discontinuities at right

angles to the bar length would need to be detected by longitudinal magnetization produced by passing current through a coil encircling the material being tested.

This testing method is useful in detecting primary discontinuities, such as non-metallic inclusions and porosity, as well as fabricating discontinuities, such as laps, bursts, cracks and seams.

EDDY CURRENT TESTING. Eddy current testing is a non-contact means of testing bars, rods or tubes for surface flaws at production speeds. It is based upon the interaction between alternating current flow in metallic materials and the reactive magnetic fields thus produced, and on the detection of variations in these fields as caused by structural discontinuities in the material under test.

There are two basic variations of the eddy current test. In one, the material being tested is passed lengthwise through an electrical coil assembly consisting of an inducing coil positioned between two sensing coils that respectively produce an eddy current flow in the steel and detect variations in the induced reactive fields. This test mode provides detection capability oriented essentially for discontinuities at right angles to the long axis of the bar. In the other method, a small pair of coils, an inductor and a sensor, is rotated circumferentially about the bar. With the fields thus generated, discontinuities which are oriented parallel to the bar axis can be detected.

Certain variables, such as test signal frequency, probe spacing between the coils and the work, and the surface condition of the bar can have an important influence on test results. Variations attributable to differing magnetic characteristics of the steel itself can be minimized by magnetic field saturation.

USEFUL DATA

Bethlehem produces tool steels in all popular sections, sizes, and types.

TOOL STEELS

Identification and Type Classification

The percentages of the elements shown for each type are only for identification purposes and are not to be considered as the means of the composition ranges of the elements.

AISI Type	Bethlehem Grade Name	Identifying Elements, per cent							
		С	Mn	Si	w	Мо	Cr	Other	
WATER-HARDENING TOOL STEELS									
W1 W2 W5	X, XCL, XX Best, Superior —	.60/1.40 .60/1.40 1.10	* -	— — — ontents m	 nav he ava	_ _ _ ilable	_ .50	.25V 	
*Other carbon contents may be available. COLD-WORK TOOL STEELS Oil-Hardening Types									
01 02 06 07	BTR — O-6 67 Tap	.90 .90 1.45 1.20	1.00 1.60 .80	_ 1.00 _	.50 — — 1.75	 .25 	.50 .75	- - -	
Medium Alloy Air-Hardening Types									
A2 A3 A4 A6 A7 A8 A9 A10	A-H5 — Air-4 — A-7 Cromo-W55 — — A-HT	1.00 1.25 1.00 .70 2.25 .55 .50 1.35	2.00 2.00 - - - 1.80	 1.25	 1.00† 1.25 - 1.05	1.00 1.00 1.00 1.25 1.00 1.25 1.40 1.50 1.10	5.00 5.00 1.00 1.00 5.25 5.00 5.00	1.00V 4.75V { 1.00V 1.50Ni 1.80Ni 2.5V } 1.00Ti	
	н	igh Carl	bon—Hi	gh Chro	mium Ty	pes			
D2 D3 D4 D5 D7	Lehigh H Lehigh S — — —	1.50 2.25 2.25 1.50 2.35	- - - -	_ _ _ _	- - - -	1.00 - 1.00 1.00 1.00	12.00 12.00 12.00 12.00 12.00	1.00V 3.00Cc 4.00V	
SHOCK-RESISTING TOOL STEELS									
\$1 \$2 \$5 \$6 \$7	67 Chisel Imperial Omega — Bearcat	.50 .50 .55 .45	- .80 1.40 -	1.00 2.00 2.25	2.50 	.50 .40 .40 1.40	1.50 — — 1.50 3.25		

AISI	Bethlehem	Identifying Elements, per cent							
Туре	Grade Name	С	Mn	Si	w	Мо	Cr	V	Со
HOT-WORK TOOL STEELS Chromium Types									
H10 H11 H12 H13 H14 H19	Cromo-V Cromo-W Cromo-High V — — — Cromo-N	.40 .35 .35 / .35 .40 .40	- - - - - - .95	- - - - - 1.00	1.50 - 5.00 4.25	2.50 1.50 1.50 1.50 - - 1.00	3.25 5.00 5.00 5.00 5.00 4.25 11.00	.40 .40 .40 1.00 — 2.00	 4.25 { .10N 1.00Ni
			Τι	ıngsten	Types				(
H21 H22 H23 H24 H25 H26	57 HW 57 Special Special HS-55	.35 .35 .30 .45 .25	_ _ _ _	- - - - - -	9.00 11.00 12.00 15.00 15.00 18.00	- - - -	3.50 2.00 12.00 3.00 4.00 4.00	- - - - 1.00	
	Molybdenum Types								
H43	HW8	.55	_	_	-	8.00	4.00	2.00	_
T1 T2 T4 T5 T6 T8 T15	T-1 	.75* .80 .75 .80 .80 .75 .80 .75		PEED T ungsten — — — — — — —	18.00 18.00 18.00 18.00 18.00 20.00 14.00 12.00		4.00 4.00 4.00 4.00 4.50 4.00 4.00	1.00 2.00 1.00 2.00 1.50 2.00 5.00	 5.00 8.00 12.00 5.00 5.00
			Mol	ybdenu	m Types	;			
M1 M2 M3 M4 M6 M7 M10 M30 M33 M34 M46 M42 M43 M44 M47	M-1 M-2 (Class 1) (Class 2) M-4 — M-7 M-10 — — — — — —	.85* .85/1.00* 1.05 1.20 1.30 .80 1.00 .85/1.00* .80 .90 .90 .90 1.10 1.10 1.20 1.15 1.25 1.10			1.50 6.00 6.00 6.00 5.50 4.00 1.75 2.00 1.50 2.00 6.75 1.50 2.75 5.25 2.00 1.50	8.50 5.00 5.00 4.50 5.00 8.75 8.00 9.50 8.00 9.50 8.00 3.75 9.50 8.25 9.50	4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00	1.00 2.00 3.00 4.00 1.50 2.00 2.00 1.25 1.15 2.00 2.00 1.15 1.60 2.00 3.20 1.25	12.00

TOOL STEELS (Cont'd)

AISI	Bethlehem			ldent	ifying E	lements,	per cen	t	
Type	Grade Name	С	Mn	Si	w	Мо	Cr	Ni	Other
			PLASTI	C-MOI	D STE	ELS			
P2	Duramold B	.07	-	_		.20	2.00	.50	
P3	Duramold Ni-Cr	.10		_	_		.60	1.25	_
P4	Duramold A	.07	_			.75	5.00		_
P5		.10	_	_		-	2.25	_	
P6	Duramold N	.10		_	_		1.50	3.50	_
P20	P-20	.35		-	_	.40	1.70		_
P21	_	.20	_	-		_	_	4.00	1.20Al
	Lustre-Die	.50	1.00	.30	_	.25	1.10	_	-
		SPEC	IAL-PU	RPOS	E TOOL	STEEL	.s		
			Lo	w Allo	y Types	5			
L2	Tough M	.50/ 1.10 *	_	-	_	_	1.00		.20V
L6	Bethalloy	.70			_	.25†	. 75	1.50	_
	*Other	carbon (contents	may be	available	e. †Op	tional.		

OTHER SPECIAL-PURPOSE TOOL STEELS

Bethlehem	Identifying Elements, per cent													
Name Grade	С	Mn	Si	w	Мо	Cr	Cu							
Brake Die	.51	1,00			.20	.95	_							
Non-Tempering	.35	.70	.25	.50	.35	.85	.30							
Lehigh L	1.00				1.00	12.00	_							
71 Alloy	.55	.80	2.00	_	_		_							
Bearing Standard	1.00		_	_		1.25								

NITRIDING STEELS

	Identifying Elements, per cent													
Type	С	Mn	Si	Mo	Cr	Ni	Ai	s						
Nitriding 135 (Type G)	.30/ .40	.40/ .70	.20/ .40	.15/ .25	.90/ 1.40	_	.85/ 1.20	_						
Nitriding 135 Mod. (Aircraft Spec.)	.38/ .45	.40/ .70	.20/ .40	.30/ .45	1.40/ 1.80	_	.85/ 1.20	_						
Nitriding N (3.5% Ni)	.20/ .27	.40/ .70	.20/ .40	.20/ .30	1.00/ 1.30	3.25/ 3.75	.85/ 1.20	_						
Nitriding EZ (Type G with S)	.30/ .40	.50/ 1.10	.20/ .40	.15/ .25	1.00/ 1.50	_	.85/ 1.20	.08/ .13						

HARDNESS CONVERSION TABLE

Brit	nell	Rockv	vell	Tensile	Brin	iell	Rocky	well	Tensile
Indent. Diam., mm	No.*	В	С	Strength, 1000 psi Approx.	Indent. Diam., mm	No.*	В	С	Strength, 1000 psi Approx.
2.25	745		65.3		3.75	262	(103.0)	26.6	127
2.30	712				3.80	255	(102.0)	25.4	123
2.35	682		61.7		3.85	248	(101.0)	24.2	120
2.40	653		60.0		3.90	241	100.0	22.8	116
2.45	627		58.7		3.95	235	99.0	21.7	114
2.50	601		57.3		4.00	229	98.2	20.5	111
2.55	578		56.0		4.05	223	97.3	(18.8)	_
2.60	555		54.7	298	4.10	217	96.4	(17.5)	105
2.65	534		53.5	288	4.15	212	95.5	(16.0)	102
2.70	514		52.1	274	4.20	207	94.6	(15.2)	100
2.75	495		51.6	269	4.25	201	93.8	(13.8)	98
2.80	477		50.3	258	4.30	197	92.8	(12.7)	95
2.85	461		48.8	244	4.35	192	91.9	(11.5)	93
2.90	444		47.2	231	4.40	187	90.7	(10.0)	90
2.95	429		45.7	219	4.45	183	90.0	(9.0)	89
3.00	415		44.5	212	4.50	179	89.0	(8.0)	87
3.05	401		43.1	202	4.55	174	87.8	(6.4)	85
3.10	388		41.8	193	4.60	170	86.8	(5.4)	83
3.15	375		40.4	184	4.65	167	86.0	(4.4)	81
3.20	363		39.1	177	4.70	163	85.0	(3.3)	79
3.25	352	(110.0)	37.9	171	4.80	156	82.9	(0.9)	76
3.30	341	(109.0)	36.6	164	4.90	149	80.8		73
3.35	331	(108.5)	35.5	159	5.00	143	78.7		71
3.40	321	(108.0)	34.3	154	5.10	137	76.4		67
3.45	311	(107.5)	33.1	149	5.20	131	74.0	:	65
3.50	302	(107.0)	32.1	146	5.30	126	72.0		63
3.55	293	(106.0)	30.9	141	5.40	121	69.8		60
3.60	285	(105.5)	29.9	138	5.50	116	67.6		58
3.65	277	(104.5)	28.8	134	5.60	111	65.7		56
3.70	269	(104.0)	27.6	130					

NOTE: This is a condensation of Table 2, Report J417b, SAE 1971 Handbook. Values in () are beyond normal range, and are presented for information only.

^{*}Values above 500 are for tungsten carbide ball; below 500 for standard ball.

TEMPERATURE CONVERSION TABLE

	-459.4 to									····	100 to	1000)	
С	F C	F	$C \stackrel{C}{\models} F C \stackrel{C}{\models} F C \stackrel{C}{\models} C$						F	С	C	F		
—273	459.4		—17.8	0	32	10.0	50	122.0	38	100	212	260	500	932
—268	450		—17.2	1	33.8	10.6	51	123.8	43	110	230	266	510	950
—262	440		—16.7	2	35.6	11.1	52	125.6	49	120	248	271	520	968
—257	430		—16.1	3	37.4	11.7	53	127,4	54	130	266	277	530	986
—251	420		—15.6	4	39.2	12.2	54	129.2	60	140	284	282	540	1004
246	410		15.0	5	41.0	12.8	55	131.0	66	150	302	288	550	1022
240	400		14.4	6	42.8	13.3	56	132.8	71	160	320	293	560	1040
234	390		13.9	7	44.6	13.9	57	134.6	77	170	338	299	570	1058
229	380		13.3	8	46.4	14.4	58	136.4	82	180	356	304	580	1076
223	370		12.8	9	48.2	15.0	59	138.2	88	190	374	310	590	1094
218	-360		-12.2	10	50.0	15.6	60	140.0	93	200	392	316	600	1112
212	-350		-11.7	11	51.8	16.1	61	141.8	99	210	410	321	610	1130
207	-340		-11.1	12	53.6	16.7	62	143.6	100	212	413.6	327	620	1148
201	-330		-10.6	13	55.4	17.2	63	145.4	104	220	428	332	630	1166
196	-320		-10.0	14	57.2	17.8	64	147.2	110	230	446	338	640	1184
—190	-310	<i>-</i> -459.4	- 9.4	15	59.0	18.3	65	149.0	116	240	464	343	650	1202
—184	-300		- 8.9	16	60.8	18.9	66	150.8	121	250	482	349	660	1220
—179	-290		- 8.3	17	62.6	19.4	67	152.6	127	260	500	354	670	1238
—173	-280		- 7.8	18	64.4	20.0	68	154.4	132	270	518	360	680	1256
—169	-273		- 7.2	19	66.2	20.6	69	156.2	138	280	536	366	690	1274
168	270	-454	- 6.7	20	68.0	21.1	70	158.0	143	290	554	371	700	1292
162	260	-436	- 6.1	21	69.8	21.7	71	159.8	149	300	572	377	710	1310
157	250	-418	- 5.6	22	71.6	22.2	72	161.6	154	310	590	382	720	1328
151	240	-400	- 5.0	23	73.4	22.8	73	163.4	160	320	608	388	730	1346
146	230	-382	- 4.4	24	75.2	23.3	74	165.2	166	330	626	393	740	1364
—140	220	-364	- 3.9	25	77.0	23.9	75	167.0	171	340	644	399	750	1382
—134	210	-346	- 3.3	26	78.8	24.4	76	168.8	177	350	662	404	760	1400
—129	200	-328	- 2.8	27	80.6	25.0	77	170.6	182	360	680	410	770	1418
—123	190	-310	- 2.2	28	82.4	25.6	78	172.4	188	370	698	416	780	1436
—118	180	-292	- 1.7	29	84.2	26.1	79	174.2	193	380	716	421	790	1454
—112	—170	-274	- 1.1	30	86.0	26.7	80	176.0	199	390	734	427	800	1472
—107	—160	-256	6	31	87.8	27.2	81	177.8	204	400	752	432	810	1490
—101	—150	-238	0	32	89.6	27.8	82	179.6	210	410	770	438	820	1508
— 96	—140	-220	.6	33	91.4	28.3	83	181.4	216	420	788	443	830	1526
— 90	—130	-202	1.1	34	93.2	28.9	84	183.2	221	430	806	449	840	1544
84	-120	-184	1.7	35	95.0	29.4	85	185.0	227	440	824	454	850	1562
79	-110	-166	2.2	36	96.8	30.0	86	186.8	232	450	842	460	860	1580
73	-100	-148	2.8	37	98.6	30.6	87	188.6	238	460	860	466	870	1598
68	- 90	-130	3.3	38	100.4	31.1	88	190.4	243	470	878	471	880	1616
62	- 80	-112	3.9	39	102.2	31.7	89	192.2	249	480	896	477	890	1634
57 51 46 40 34	- 70 60 50 40 30	- 94 - 76 - 58 - 40 - 22	4.4 5.0 5.6 6.1 6.7	40 41 42 43 44	104.0 105.8 107.6 109.4 111.2	32.2 32.8 33.3 33.9 34.4	90 91 92 93 94	194.0 195.8 197.6 199.4 201.2	254	490	914	482 488 493 499 504	900 910 920 930 940	1652 1670 1688 1706 1724
— 29 — 23 — 17.8	- 20 - 10 0	- 4 14 32	7.2 7.8 8.3 8.9 9.4	45 46 47 48 49	113.0 114.8 116.6 118.4 120.2	35.0 35.6 36.1 36.7 37.2	95 96 97 98 99	203.0 204.8 206.6 208.4 210.2				510 516 521 527 532	950 960 970 980 990	1742 1760 1778 1796 1814
						37.8	100	212.0				538	1000	1832

Look up reading in middle column. If in degrees Centigrade, read Fahrenheit equivalent ir right hand column; if in Fahrenheit degrees, read Centigrade equivalent in left hand column.

		1000	to 2000					2000 t	o 3000		
С	C F	F	С	C F	F	С	0/1	F	С	O/F	F
538	1000	1832	816	1500	2732	1093	2000	3632	1371	2500	4532
543	1010	1850	821	1510	2750	1099	2010	3650	1377	2510	4550
549	1020	1868	827	1520	2768	1104	2020	3668	1382	2520	4568
554	1030	1886	832	1530	2786	1110	2030	3686	1388	2530	4586
560	1040	1904	838	1540	2804	1116	2040	3704	1393	2540	4604
566	1050	1922	843	1550	2822	1121	2050	3722	1399	2550	4622
571	1060	1940	849	1560	2840	1127	2060	3740	1404	2560	4640
577	1070	1958	854	1570	2858	1132	2070	3758	1410	2570	4658
582	1080	1976	860	1580	2876	1138	2080	3776	1416	2580	4676
588	1090	1994	866	1590	2894	1143	2090	3794	1421	2590	4694
593	1100	2012	871	1600	2912	1149	2100	3812	1427	2600	4712
599	1110	2030	877	1610	2930	1154	2110	3830	1432	2610	4730
604	1120	2048	882	1620	2948	1160	2120	3848	1438	2620	4748
610	1130	2066	888	1630	2966	1166	2130	3866	1443	2630	4766
616	1140	2084	893	1640	2984	1171	2140	3884	1449	2640	4784
621	1150	2102	899	1650	3002	1177	2150	3902	1454	2650	4802
627	1160	2120	904	1660	3020	1182	2160	3920	1460	2660	4820
632	1170	2138	910	1670	3038	1188	2170	3938	1466	2670	4838
638	1180	2156	916	1680	3056	1193	2180	3956	1471	2680	4856
643	1190	2174	921	1690	3074	1199	2190	3974	1477	2690	4874
649	1200	2192	927	1700	3092	1204	2200	3992	1482	2700	4892
654	1210	2210	932	1710	3110	1210	2210	4010	1488	2710	4910
660	1220	2228	938	1720	3128	1216	2220	4028	1493	2720	4928
666	1230	2246	943	1730	3146	1221	2230	4046	1499	2730	4946
671	1240	2264	949	1740	3164	1227	2240	4064	1504	2740	4964
677	1250	2282	954	1750	3182	1232	-2250	4082	151 <i>0</i>	2750	4982
682	1260	2300	960	1760	3200	1238	2260	4100	1516	2760	5000
688	1270	2318	966	1770	3218	1243	2270	4118	1521	2770	5018
693	1280	2336	971	1780	3236	1249	2280	4136	1527	2780	5036
699	1290	2354	977	1790	3254	1254	2290	4154	1532	2790	5054
704	1300	2372	982	1800	3272	1260	2300	4172	1538	2800	5072
710	1310	2390	988	1810	3290	1266	2310	4190	1543	2810	5090
716	1320	2408	993	1820	3308	1271	2320	4208	1549	2820	5108
721	1330	2426	999	1830	3326	1277	2330	4226	1554	2830	5126
727	1340	2444	1004	1840	3344	1282	2340	4244	1560	2840	5144
732	1350	2462	1010	1850	3362	1288	2350	4262	1566	2850	5162
738	1360	2480	1016	1860	3380	1293	2360	4280	1571	2860	5180
743	1370	2498	1021	1870	3398	1299	2370	4298	1577	2870	5198
749	1380	2516	1027	1880	3416	1304	2380	4316	1582	2880	5216
754	1390	2534	1032	1890	3434	1310	2390	4334	1588	2890	5234
760	1400	2552	1038	1900	3452	1316	2400	4352	1593	2900	5252
766	1410	2570	1043	1910	3470	1321	2410	4370	1599	2910	5270
771	1420	2588	1049	1920	3488	1327	2420	4388	1604	2920	5288
777	1430	2606	1054	1930	3506	1332	2430	4406	1610	2930	5306
782	1440	2624	1060	1940	3524	1338	2440	4424	1616	2940	5324
788	1450	2642	1066	1950	3542	1343	2450	4442	1621	2950	5342
793	1460	2660	1071	1960	3560	1349	2460	4460	1627	2960	5360
799	1470	2678	1077	1970	3578	1354	2470	4478	1632	2970	5378
804	1480	2696	1082	1980	3596	1360	2480	4496	1638	2980	5396
810	1490	2714	1088	1990	3614	1366	2490	4514	1643	2990	5414
			1093	2000	3632				1649	3000	5432

Look up reading in middle column. If in degrees Centigrade, read Fahrenheit equivalent in right hand column; if in degrees Fahrenheit, read Centigrade equivalent in left hand column.

INCH/MILLIMETER EQUIVALENTS

Fraction	Decimal	Millimeters	Fraction	Decimal	Millimeters
1/64	.015625	0.39688	33/64	.515625	13.09690
1/32	.03125	0.79375	17/32	.53125	13.49378
3/64	.046875	1.19063	35/64	.546875	13.89065
1/16	.0625	1.58750	9/16	.5625	14.28753
5/64	.078125	1.98438	37/64	.578125	14.68440
3/32	.09375	2.38125	19/32	.59375	15.08128
7/64	.109375	2.77813	39/64	.609375	15.47816
1/8	.125	3.17501	5/8	.625	15.87503
9/64	.140625	3.57188	41/64	.640625	16.27191
5/32	.15625	3.96876	21/32	.65625	16.66878
11/64	.171875	4.36563	43/64	.671875	17.06566
3/16	.1875	4.76251	11/16	.6875	17.46253
13/64	.203125	5.15939	45/64	.703125	17.85941
7/32	.21875	5.55626	23/32	.71875	18.25629
15/64	.234375	5.95314	47/64	.734375	18.65316
1/4	.25	6.35001	3/4	.75	19.05004
17/64	.265625	6.74689	49/64	.765625	19.44691
9/32	.28125	7.14376	25/32	.78125	19.84379
19/64	.296875	7.54064	51/64	.796875	20.24067
5/16	.3125	7.93752	13/16	.8125	20.63754
21/64	.328125	8.33439	53/64	.828125	21.03442
11/32	.34375	8.73127	27/32	.84375	21.43129
²³ /64	.359375	9.12814	55/64	.859375	21.82817
3 ⁄8	.375	9.52502	7∕ ₈	.875	22.22504
²⁵ /64	.390625	9.92189	57/64	.890625	22.62192
13/32	.40625	10.31877	29/32	.90625	23.01880
²⁷ /64	.421875	10.71565	59/64	.921875	23.41567
7/16	.4375	11.11252	15/16	.9375	23.81255
²⁹ / ₆₄	.453125	11.50940	61/64	.953125	24.20942
15/32	.46875	11.90627	31/32	.96875	24.60630
31/64	.484375	12.30315	63/64	.984375	25.00318
1/2	.5	12.70003	1	1.	25.40005

ETRIC EQUIVALENTS FOR WEIGHTS

```
I Junce Avoirdupois (oz) = 28.3495 gm

I pound (lb) (16 oz) = 453.6 gm

I per in. = 178.6 gm per cm

I per in.² = 70.31 gm per cm²

I lb per in.³ = 27.68 gm per cm³

I per ft = 1.4882 kg per m

I per ft² = 4.8824 kg per m²

I lb per ft³ = 16.0184 kg per m³

I et ton (NT) (2,000 lb) = 907.19 kg

I gram (gm) = 0.0022 lb

I m per cm = 0.0056 lb per in.

I gm per cm² = 0.0142 lb per in.²

I gm per cm³ = 0.0361 lb per in.³
```

 $i \cdot ilogram (kg) (1,000 gm) = 2.2046 lb$

 1 _{n} g per m = 0.67197 lb per ft

 $1 \text{ kg per m}^2 = 0.2048 \text{ lb per ft}^2$

 $1 g per m^3 = 0.0624 lb per ft^3$

1 .netric ton (1,000 kg) = 1.1023 NT

METRIC EQUIVALENTS FOR MEASURES

```
1 \text{ inch (in.)} = 2.54 \text{ cm}
1 square inch (in.^{2}) = 6.4516 cm^{2}
1 cubic inch (in.3) = 16.3872 cm<sup>3</sup>
1 foot (ft) (12 in.) \approx 30.48 cm
1 square foot (ft<sup>2</sup>) = 0.0929 \text{ m}^2
                        = 929.03 \text{ cm}^2
1 cubic foot (ft^3) = 0.0283 \text{ m}^3
                       = 28,317 \text{ cm}^3
1 yard (yd) (3 ft) = 91.44 \text{ cm}
= 0.9144 m
1 square yard (yd^2) = 0.8361 \text{ m}^2
1 cubic yard (yd^3) = 0.7646 m^3
                                       =1,609.344 m
1 mile (5,280 ft, or 1,760 yd) = 1.6093 km
1 millimeter (mm) = 0.03937 in.
1 square mm (mm^2) = 0.0015 in.^2
1 centimeter (cm) (10 \text{ mm}) = 0.3937 \text{ in.}
1 square cm (cm<sup>2</sup>) = 0.1549 \text{ in.}^2
1 cubic cm (cm^3) = 0.0610 in.^3
                              = 39.37 in.
1 meter (m) (100 \text{ cm}) = 3.2808 \text{ ft}
                              = 1.0936 \text{ yd}
                           = 10.7639 ft<sup>2</sup>
1 square meter (m^2) = 1.196 yd<sup>2</sup>
                         = 35.314 \text{ ft}^3
1 cubic meter (m<sup>3</sup>) = 1.3079 yd<sup>3</sup>
                                     = 3.280.83 \text{ ft}
1 kilometer (km) (1,000 \text{ m}) = 1,093.61 \text{ yd}
                                     = 0.6214 mile
```

WEIGHTS AND AREAS OF SQUARE AND ROUND STEEL BARS

	\\\\-!=!=!=	Ib no-ft	Area,	og in		Weight,	lb per ft	Area,	ea in
Size or	Weight,	-			Size				
Diam	Square	Round	Square	Round	Diam	Square	Round	Square	Round
in.		•		0	in.				0
1/16	.013	.010	.0039	.0031	13/16	2.245	1.763	.6602	.5185
5/64	.021	.016	.0061	.0048	53/64	2.332	1.831	.6858	.5386
3/32	.030	.023	.0088	.0069	²⁷ / ₃₂	2.420	1.901	.7119	.5591
7/64	.041	.032	.0120	.0094	55/64	2.511	1.972	.7385	.5800
1/8 9/64	.053 .067	.042 .053	.0156 .0198	.0123 .0155	7∕a	2.603	2.044	.7656	.6013
5/32	.083	.065	.0244	.0192	57/64	2.697	2.118	.7932	.6230
11/64	.100	.079	.0295	.0232	29/32	2.792	2.193	.8213	.6450
3/16	.120	.094	.0352	.0276	59/64	2.889	2.270	.8498	.6675
13/64	.140	.110	.0413	.0324	15/16	2.988	2.347	.8789	.6903
7/32	.163	.128	.0479	.0376	61/64	3.089	2.426	.9084	.7135
15/64	.187	.147	.0549	.0431	31/32	3.191	2.506	.9385	.7371
1/4	.212	.167	.0625	.0491	63/64	3.294	2.587	.9689	.7610
17/64	.240	.188	.0706	.0554	1	3.400	2.670	1.0000	.7854
9/32	.269	.211	.0791	.0621	1/32	3.616	2.840	1.0635	.8353
19/64	.300	.235	.0881	.0692	1/16	3.838	3.014	1.1289	.8866
5/16	.332	.261	.0977	.0767	3/32	4.067	3.194	1.1963	.9396
²¹ / ₆₄ ¹¹ / ₃₂	.366 .402	.288 .316	.1077 .1182	.0846 .0928	1/8	4.303	3.379	1.2656	.9940
23/64	.439	.345	.1182	.0928	5/32	4.545	3.570	1.3369	1.0500
					3/16	4.795	3.766	1,4102	1.1075
3/8 ²⁵ /64	.478 .519	.376 .407	.1406 .1526	.1104 .1198	7/32	5.050	3.966	1.4853	1.1666
13/32	.561	.441	.1650	.1296	1/4	5.312	4.173	1.5625	1.2272
27/64	.605	.475	.1780	.1398	9/32	5.581	4.173	1.6416	1.2893
7/16	.651	.511	.1914	.1503	5/16	5.857	4.600	1.7227	1.3530
²⁹ /64	.698	.548	.2053	.1613	11/32	6.139	4.822	1.8056	1.4182
15/32	.747	.587	.2197	.1726	3/8	6.428	5.049	1.8906	1.4849
31/64	.798	.627	.2346	.1843	/8 13/ ₃₂	6.724	5.281	1.9775	1.5532
1/2	.850	.668	.2500	.1963	7/16	7.026	5.518	2.0664	1.6230
33/ ₆₄	.904	.710	.2659	.2088	15/32	7.334	5.761	2.1572	1.6943
¹⁷ / ₃₂ ³⁵ / ₆₄	.960 1.017	.754 .799	.2822 .2991	.2217 .2349	1/2	7.650	6 000	2.2500	1,7671
		1	!		17/32	7.650 7.972	6.008 6.261	2.2300	1.8415
⁹ / ₁₆ ³⁷ / ₆₄	1.076 1.136	.845 .893	.3164 .3342	.2485 .2625	9/16	8.301	6.520	2.4414	1.9175
19/32	1.199	.941	.3525	.2769	19/32	8.636	6.783	2.5400	1.9949
39/64	1.263	.992	.3713	.2916	H	0.070	7.051	2 0406	2.0720
5/8	1.328	1.043	.3906	.3068	5/8 21/ ₃₂	8.978 9.327	7.051 7.325	2.6406 2.7431	2.0739 2.1545
41/64	1.395	1.096	.4104	.3223	11/16	9.682	7.604	2.8477	2.2365
21/32	1.464	1.150	.4307	.3382	23/32	10.044	7.889	2.9541	2.3202
43/64	1.535	1.205	.4514	.3545			0.470	0.0005	0.4050
11/16	1.607	1.262	.4727	.3712	3/4 25/32	10.413	8.178 8.473	3.0625 3.1728	2.4053
45/64	1.681	1.320	.4944	.3883	13/ ₁₆	10.788 11.170	8.773	3.1728	2.5802
²³ / ₃₂	1.756	1.379	.5166	.4057	27/32	11.558	9.078	3.3994	2.6699
47/64	1.834	1.440	.5393	.4236	H	1	ł		
3/4 49/	1.913	1.502	.5625	.4418 .4604	7/8 29/32	11.953 12.355	9.388 9.704	3.5156 3.6337	2.7612 2.8540
49/64 25/32	1.993 2.075	1.565 1.630	.5862 .6103	.4794	15/16	12.355	10.024	3.7539	2.9483
51/ ₆₄	2.075	1.696	.6350	.4987	31/32	13.178	10.350	3.8760	3.0442
		1	L	1	<u> </u>		i		

Size	Weight,	lb per ft	Area,	sq in.	Size	Weight,	lb per ft	Area,	sq in.
or	Square	Round	Square	Round	or Diam	Square	Round	Square	Round
Diam in.		•		0	in.		•		0
2	13.600	10.681	4.0000	3.1416	5	85.000	66.759	25.000	19.635
1/16	14.463	11.359	4.2539	3.3410	1/16	87.138	68.438	25.629	20.129
1∕∕8	15.353	12.058	4.5156	3.5466	1∕8	89.303	70.139	26.266	20.629
3/16	16.270	12.778	4.7852	3.7583	3/16	91.495	71.860	26.910	21.135
1/4	17.213	13.519	5.0625	3.9761	1/4	93.713	73.602	27.563	21.648
5/16	18.182	14.280	5.3477	4.2000	5/16	95.957	75.364	28.223	22.166
3∕8	19.178	15.062	5.6406	4.4301	3/8	98.228	77.148	28.891	22.691
7/16	20.201	15.866	5.9414	4.6664	7/16	100.53	78.953	29.566	23.221
1/2	21.250	16.690	6.2500	4.9087	1/2	102.85	80.778	30.250	23.758
9/16	22.326	17.535	6.5664	5.1572	9/16	105.20	82.624	30.941	24.301
5∕8	23.428	18.400	6.8906	5.4119	5/8	107.58	84.492	31.641	24.850
11/16	24.557	19.287	7.2227	5.6727	11/16	109.98	86.380	32.348	25.406
3/4	25.713	20.195	7.5625	5.9396	3/4	112.41	88.289	33.063	25.967
13/16	26.895	21.123	7.9102	6.2126	13/16	114.87	90.218	33.785	26.535
⅓	28.103	22.072	8.2656	6.4918	78	117.35	92.169	34.516	27.109
15/16	29.338	23.042	8.6289	6.7771	15/16	119.86	94.140	35.254	27.688
3	30.600	24.033	9.0000	7.0686	6	122.40	96.133	36.000	28.274
1/16	31.888	25.045	9.3789	7.3662	1/16	124.96	98.146	36.754	28.866
1/8 3/	33.203	26.078	9.7656	7.6699	1/8 3/	127.55	100.18	37.516	29.465
3/16	34.545	27.131	10.160	7.9798	3/16	130.17	102.23	38.285	30.069
1/4	35.913	28.206	10.563	8.2958	1/4	132.81	104.31	39.063	30.680
5/16 3/	37.307	29.301	10.973	8.6179	5/16 3/	135.48	106.41	39.848	31.296
3∕8 ⁷ ∕16	38.728 40.176	30.417 31.554	11.391 11.816	8.9462 9.2806	3/8 7/ ₁₆	138.18 140.90	108.52 110.66	40.641 41.441	31.919
	i				1/2				32.548
½ %16	41.650 43.151	32.712 33.891	12.250 12.691	9.6211 9.9678	9/16	143.65 146.43	112.82 115.00	42.250 43.066	33.183 33.824
/16 5/8	44.678	35.090	13.141	10.321	5/8	149.23	117.20	43.891	34.472
11/16	46.232	36.311	13.598	10.521	11/16	152.06	119.43	44.723	35.125
3/4	47.813	37.552	14.063	11.045	3/4	154.91	121.67	45.563	35.785
13/16	49.420	38.814	14.535	11.416	13/16	157.79	123.93	46.410	36.450
7 ₈	51.053	40.097	15.016	11.793	7/8	160.70	126.22	47.266	37.122
15/16	52.713	41.401	15.504	12.177	15/16	163.64	128.52	48.129	37.800
4	54.400	42.726	16.000	12.566	7	166.60	130.85	49.000	38.485
1/16	56.113	44.071	16.504	12.962	1/16	169.59	133.19	49.879	39.175
1/8	57.853	45.438	17.016	13.364	1/8	172.60	135.56	50.766	39.871
3/16	59.620	46.825	17.535	13.772	3/16	175.64	137.95	51.660	40.574
1/4	61.413	48.233	18.063	14.186	1/4	178.71	140.36	52.563	41.282
5/16	63.232	49.662	18.598	14.607	5/16	181.81	142.79	53.473	41.997
3∕8	65.078	51.112	19.141	15.033	3/8	184.93	145.24	54.391	42.718
7/16	66.951	52.583	19.691	15.466	7/16	188.08	147.71	55.316	43.445
1/2	68.850	54.075	20.250	15.904	1/2	191.25	150.21		44.179
⁹ /16	70.776	55.587	20.816	16.349	9/16	194.45	152.72		44.918
5/8 11/	72.728	57.121	21.391	16.800	5/8 11/	197.68	155.26	58.141	45.664
11/16	74.707	58.675	21.973	17.257	11/16	200.93	157.81	59.098	46.415
3/4 13/	76.713	60.250	22.563	17.721	3/4 13/	204.21	160.39	60.063	47.173
¹³ / ₁₆	78.745	61.846	23.160	18.190	13/ ₁₆	207.52	162.99	61.035	47.937 48.707
7∕8 ¹⁵ ∕16	80.803	63.463 65.100	23.766	18.665 19.147	7/8 15/ ₁₆	210.85 214.21	165.60 168.24	62.016 63.004	49.483
/16	82.888	05.100	24.379	13.147	/16	214.21	100.24	00.004	70.703

WEIGHTS OF SQUARE EDGE FLATS

Pounds per Linear Foot

Width,							Thic	knes	s, Ind	ches						
Inches	1/16	1/8	3/16	1/4	5/16	3/8	7∕16	1/2	9/16	5/8	11/16	3/4	13/16	7/8	15/16	1
1/4 1/2 3/4	.053 .108 .159 .213	.105 .213 .319 .425	.159 .319 .478 .638	.213 .425 .638 .850	.266 .531 .797 1.063	.319 .638 .956 1.275	.372 .744 1.116 1.488		.478 .956 1.434 1.913	.531 1.063 1.594 2.125	1.753	1.275	1.381 2.072	.744 1.488 2.231 2.975	2.391	.851 1.701 2.551 3.401
11/4 11/2 13/4 2	.266 .319 .372 .425	.531 .638 .744 .850	.797 .956 1.116 1.275	1.063 1.275 1.488 1.700	1.594 1.859	1.913 2.231	2.231 2.603		3.347	2.656 3.188 3.719 4.250	3.506 4.091	3.825 4.463	4.144 4.834	5.206	5.578	4.25 5.10 5.95 6.80
2½ 2½ 2¾ 3	.478 .531 .584 .638	1.053 1.169	1.434 1.594 1.753 1.913	2.125 2.338	2.656 2.922	3.188 3.503	3.719 4.091	4.250 4.675	4.781 5.259	4.781 5.313 5.844 6.375	6.428	6.375 7.013	6.906 7.597	7.438 8.181	8.766	8.50 9.35
31/4 31/2 33/4 4	.691 .744 .797 .850		2.231	3.188	3.453 3.719 3.994	4.144 4.463	5.208 5.578	5.950 6.375	7.172	7.438 7.959	8.181	8.925 9.563	9.669 10.36		11.16 11.95	
41/4 41/2 43/4 5	.903 .956 1.009 1.063		2.869 3.028	3.825 4.038	4.516 4.781 5.047	5.419 5.738 6.056	6.322 6.694 7.066	7.225 7.650 8.075	8.128 8.603	9.563 10.09	9.934 10.52 11.10 11.69	11.48 12.11	12.43 13.12	13.39 14.13	14.34 15.14	14.45 15.30 16.15 17.00
51/4 51/2 53/4 6	1.116 1.169 1.222 1.275	2.444	3.506 3.666	4.675 4.888	5.844 6.109	7.331	7.809 8.181 8.553	8.925 9.350 9.775	10.04 10.52 11.00 11.48	11.16 11.69 12.22	12.27 12.86 13.44	13.39 14.03 14.66	14.50 15.19 15.88	17.11	17.53 18.33	17.85 18.70 19.55 20.40
61/4 61/2 63/4	1.328 1.381 1.434 1.488	2.763 2.869	4.144 4.303	5.525 5.738	6.908 7.172	8.288 8.608	9.297 9.669 10.04	10.63	11.95 12.43 12.91	13.28 13.81 14.34	14.61 15.19 15.78	15.94 16.58 17.21		19.34 20.08	19.92 20.72 21.52 22.31	21.25 22.10 22.95 23.80
71/4 71/2 73/4 8	1.541 1.594 1.647 1.700	3.081 3.188 3.294	4.622 4.781 4.941	6.375 6.588	7.969 8.234	9.244 9.563 9.881 10.20	11.16 11.53	12.75 13.18	14.34 14.82	15.94 16.47	17.53 18.12	19.13	20.72 21.41	22.31 23.06	23.11 23.91 24.70 25.50	24.65 25.50 26.35 27.20
81/4 81/2 83/4 9	1.753 1.806 1.859 1.913	3.613 3.719	5.419 5.578	7.225	9.031 9.297	10.52 10.84 11.16 11.48	12.64 13.02	14.03 14.45 14.88 15.30	16.26 16.73	17.53 18.06 18.59 19.13	19.28 19.87 20.45 21.04	21.04 21.68 22.31 22.95	22.79 23.48 24.17 24.86	24.54 25.29 26.03 26.78	26.30 27.09 27.89 28.69	28.05 28.90 29.75 30.60
91/4 91/2 93/4 10	2.072	4.038	6.058	8.075 8.238	10.09 10.38	11.79 12.11 12.43 12.75	14.13 14.50	16.15 16.58	18.17	20.19 20.72	21.62 22.21 22.79 23.38	23.59 24.23 24.86 25.50	25.55 26.24 26.93 27.63	28.26 29.01	29.48 30.28 31.08 31.88	31.45 32.30 33.15 34.00

Width,	Thickness, Inches															
Inches	11/16	11/8	13/16	11/4	15/16	13/8	17/16	11/2	1%16	15/8	111/16	13/4	113/16	17/8	115/16	2
1/4 1/2 3/4	.903 1.806 2.709 3.613	1.913 2.869	2.019 3.028	3.188	2.231 3.347	2.338 3.506	2.444 3.666		2.656 3.984	2.763 4.144	1.434 2.869 4.303 5.738	2.975 4.463	3.081 4.622	3.188 4.781	3.294 4.941	3.480 5.100
1½ 1½ 1¾ 2	4.516 5.419 6.322 7.225	5.738 6.694	7.066	6.375 7.438	6.694 7.809	7.013 8.181	8.553	7.650 8.925	7.969 9.297	8.288 9.669	7.172 8.606 10.04 11.48	8.925 10.41	9.244 10.78	9.563	9.881 11.53	
21/4 21/2 23/4 3	9.031 9.934	8.606 9.563 10.52 11.48	10.09 11.10	10.63 11.69	11.16 12.27	11.69 12.86	12.22 13.44	12.75 14.03	14.61	13.81 15.19	14.34 15.78	14.88 16.36			16.47 18.12	
31/4 31/2 33/4	11.74 12.64 13.55 14.45	13.39 14.34		14.88 15.94	16.73	16.36 17.53	17.11	17.85 19.13	18.59 19.92	20.72	20.08 21.52	20.83 22.31	21.57	23.91	23.06 24.70	22.10 23.80 25.50 27.20
41/ ₄ 41/ ₂ 43/ ₄ 5	17.16	17.21 18.17	18.17 19.18	19.13		22.21	21.99 23.22	24.23	23.91 25.23	24.86 26.24	25.82 27.25	26.78 28.26	27.73 29.27	30.28	29.64 31.29	28.90 30.60 32.30 34.00
51/4 51/2 53/4 6	18.97 19.87 20.77 21.68	21.04 21.99	22.21 23.22	23.38 24.44	25.66	25.71 26.88	26.88 28.10	29.33	29.22 30.55	30.39 31.77	31.56 32.99	32.73 34.21	33.89 35.43	33.47 35.06 36.66 38.25	36.23 37.88	35.70 37.40 39.10 40.80
6½ 6½ 6¾ 7	22.58 23.48 24.38 25.29	25.82	26.24	26.56 27.63 28 69 29.75	30.12	30.39 31.56	31.77 32.99	33.15 34.43	34.53 35.86	35.91 37.29	37.29 38.73	38.68 40.16	41.60	41.44 43.03	44.47	
7½ 7½ 7¾ 8	26.19 27.09 28.00 28.90		30.28 31.29		33.47 34.58	35.06 36.23	35.43 36.66 37.88 39.10	38.25 39.53	39.84 41.17	41.44 42.82	41.60 43.03 44.47 45.90	44.63 46.11	46.22 47.76	47.81 49.41	49.41 51.05	51.00
8½ 8½ 8¾ 9	29.80 30.71 31.61 32.51	32.51 33.47	34.32 35.33	35.06 36.13 37.19 38.25	37.93	40.91	41.54	43.35 44.63	45.16 46.48	48.34		50.58 52.06	52.38 53.92	54.19 55.78	55.99 57.64	56.10 57.80 59.50 61.20
9½ 9½ 9¾ 10	34.32 35.22	36.34 37.29	38.36 39.37	40.38	42.39 43.51	44.41 45.58	46.43 47.65	48.45 49.73	50.47 51.80	52.49 53.87	55.94	56.53 58.01	58.54 60.08	58.97 60.56 62.16 63.75	62.58 64.23	

ROLLING TOLERANCES—INCHES

Hot-Rolled Carbon and Alloy Steel Bars

Rounds, Squares, & Round-Cornered Squares

Specified Sizes	Variation	from Size	Out-of-Round
Specified Sizes	Over	Under	or Out-of-Square
To 5/16 incl	0.005	0.005	0.008
Over 5/16 to 7/16 incl	0.006	0.006	0.009
Over 1/16 to 1/8 incl	0.007	0.007	0.010
Over % to % incl	0.008	0.008	0.012
Over ½ to 1 incl	0.009	0.009	0.013
Over 1 to 11/4 incl	0.010	0.010	0.015
Over 11/2 to 11/4 incl	0.011	0.011	0.016
Over 1¼ to 1% incl	0.012	0.012	0.018
Over 1% to 1½ incl	0.014	0.014	0.021
Over 1½ to 2 incl	1/64	1/64	0.023
Over 2 to 2½ incl	1/32	0	0.023
Over 2½ to 3½ incl	3/64	0	0.035
Over 3½ to 4½ incl	1/16	0	0.046
Over 4½ to 5½ incl	5/64	0	0.058
Over 5½ to 6½ incl	1/a	0	0.070
Over 6½ to 8¼ incl	5/32	0	0.085
Over 81/4 to 91/2 incl	3/16	0	0.100
Over 9½ to 10	1/4	0	0.120

NOTE: Out-of-round is the difference between the maximum and minimum diameters of the bar, measured at the same cross section. Out-of-square is the difference in the two dimensions at the same cross section of a square bar between opposite faces.

Hexagons

Specified Sizes between Opposite Sides	Variation from Size		
	Over	Under	Out-of- Hexagon
To ½ incl	0.007	0.007	0.011
Over ½ to 1 incl	0.010	0.010	0.015
Over 1 to 1½ incl	0.021	0.013	0.025
Over 1½ to 2 incl	1/32	1/64	1/32
Over 2 to 2½ incl	3/64	1/64	3/64
Over 2½ to 3½ incl	1/16	1/64	1/16

NOTE: Out-of-hexagon is the greatest difference between any two dimensions at the same cross section between opposite faces.

Square-Edge and Round-Edge Flats

	Variation from Thickness for Thicknesses Given		Variation from Width				
Specified Widths	.203 to ¼, excl	¼ to ½, incl	Over ½ to 1, incl	Over 1 to 2, incl	Over 2	Over	Under
To 1 incl	0.007	0.008	0.010	_	_	1/64	1/64
Over 1 to 2 incl	0.007	0.012	0.015	1/32		1/32	1/32
Over 2 to 4 incl	0.008	0.015	0.020	1/32	3/64	1/16	1/32
Over 4 to 6 incl	0.009	0.015	0.020	1/32	3/64	3/32	1/16
Over 6 to 8 incl	0.015*	0.016	0.025	1/32	3/64**	1/8**	3/32*

^{*}Flats over 6 in. in width are not available in thicknesses under 0.230 in.

^{**}Tolerances not applicable to flats over 6 in. in width and over 3 in. in thickness.

GLOSSARY OF STEEL TESTING AND THERMAL TREATING TERMS

Ac TEMPERATURE. See Transformation Temperature.

AGING. A time-dependent change in the properties of certain steels that occurs at ambient or moderately elevated temperatures after hot working, after a thermal treatment (quench aging), or after a cold working operation (strain aging).

ANNEALING. A thermal cycle involving heating to, and holding at a suitable temperature and then cooling at a suitable rate, for such purposes as reducing hardness, improving machinability, facilitating cold working, producing a desired microstructure, or obtaining desired mechanical or other properties.

AR TEMPERATURE. See Transformation Temperature.

AUSTEMPERING. A thermal treatment process which involves quenching steel from a temperature above the transformation range in a medium having a rate of heat abstraction high enough to prevent the formation of high-temperature transformation products, and holding the material at a temperature above that of martensite formation until transformation is complete. The product formed is termed lower bainite.

AUSTENITIZING. The process of forming austenite by heating a ferrous alloy into the transformation range (partial austenitizing) or above this range (complete austenitizing).

BAINITE. A decomposition product of austenite consisting of an aggregate of ferrite and carbide. In general, it forms at temperatures lower than those where very fine pearlite forms, and higher than that where martensite begins to form on cooling. Its microstructural appearance is feathery if formed in the upper part of the temperature range; acicular, resembling tempered martensite, if formed in the lower part.

¹Certain of these definitions have been derived from ASTM Standard E44-75.

BLUE BRITTLENESS. Brittleness occurring in some steels after being heated to within the temperature range of 400 to 700 F, or more especially, after being worked within this range. Killed steels are virtually free from this kind of brittleness.

BRINELL HARDNESS NUMBER (HB). A measure of hardness determined by the Brinell hardness test, in which a hard steel ball under a specific load is forced into the surface of the test material. The number is derived by dividing the applied load by the surface area of the resulting impression.

CARBURIZING. A process in which an austenitized ferrous material is brought into contact with a carbonaceous atmosphere or medium of sufficient carbon potential as to cause absorption of carbon at the surface and, by diffusion, create a concentration gradient. Hardening by quenching follows.

CASE HARDENING. A term descriptive of one or more processes of hardening steel in which the outer portion, or case, is made substantially harder than the inner portion, or core. Most of the processes involve either enriching the surface layer with carbon and/or nitrogen, usually followed by quenching and tempering, or the selective hardening of the surface layer by means of flame or induction hardening.

CEMENTITE. A hard, brittle compound of iron and carbon (Fe₃C), the major form in which carbon occurs in steel.

CONTROLLED COOLING. A process by which steel is cooled from an elevated temperature in a predetermnied manner to avoid hardening, cracking, or internal damage, or to produce desired microstructure or mechanical properties.

CREEP. A time-dependent deformation of steel occurring under conditions of elevated temperature accompanied by stress intensities well within the apparent elastic limit for the temperature involved.

CRITICAL RANGE. Synonymous with *Transformation Range*, which is the preferred term.

DECARBURIZATION. The loss of carbon from the surface of steel as a result of heating in a medium which reacts with the carbon.

DUCTILITY. The ability of a material to deform plastically without fracturing, usually measured by elongation or reduction of area in a tension test, or, for flat products such as sheet, by height of cupping in an Erichsen test.

ELASTIC LIMIT. The greatest stress that a material can withstand without permanent deformation.

ELONGATION. A measure of ductility, determined by the amount of permanent extension achieved by a tension-test specimen, and expressed as a percentage of that specimen's original gage length. (as: 25% in 2 in.).

END-QUENCH HARDENABILITY TEST (JOMINY TEST). A method for determining the hardenability of steel by water-quenching one end of an austenitized cylindrical test specimen and measuring the resulting hardness at specified distances from the quenched end.

ENDURANCE LIMIT. The maximum cyclic stress, usually expressed in pounds per sq in., to which a metal can be subjected for indefinitely long periods without damage or failure. Conventionally established by the rotating-beam fatigue test.

EXTENSOMETER. An instrument capable of measuring small magnitudes of strain occurring in a specimen during a tension test, conventionally used when a stress-strain diagram is to be plotted.

ETCH TEST (MACROETCH). An inspection procedure in which a sample is deep-etched with acid and visually examined for the purpose of evaluating its structural homogeneity.

FERRITE. A crystalline form of alpha iron, one of the two major constituents of steel (cf *Cementite*) in which it acts as the solvent to form solid solutions with such elements as manganese, nickel, silicon, and, to a small degree, carbon.

FLAKES. Internal fissures which may occur in wrought steel product during cooling from hot-forging or rolling. Their occurrence may be minimized by effective control of hydrogen, either in melting or in cooling from hot work.

FLAME HARDENING. A hardening process in which the surface is heated by direct flame impingement and then quenched.

FULL ANNEALING. A thermal treatment for steel with the primary purpose of decreasing hardness. It is accomplished by heating above the transformation range, holding for the proper time interval, and controlled slow cooling to below that range. Subsequent cooling to ambient temperature may be accomplished either in air or in the furnace.

GRAIN SIZE NUMBER. An arbitrary number which is calculated from the average number of individual crystals, or grains, which appear on the etched surface of a specimen at 100 diameters magnification. See page 81.

HARDENABILITY. That property of steel which determines the depth and distribution of hardness induced by quenching.

HARDNESS. The resistance of a material to plastic deformation. Usually measured in steels by the Brinell, Rockwell, or Vickers indentation-hardness test methods (q.v.).

IMPACT TEST. A test for determining the ability of a steel to withstand high-velocity loading, as measured by the energy, in ft-lb, which a notched-bar specimen absorbs upon fracturing.

INDUCTION HARDENING. A quench hardening process in which the heat is generated by electrical induction.

ISOTHERMAL TRANSFORMATION. A change in phase at any constant temperature. Practical application of the principle involved may be found in the isothermal annealing and austempering of steel.

MARTEMPERING. A method of hardening steel. Involves quenching an austenitized ferrous alloy in a medium at a temperature in the upper part of the martensitic range, or slightly above that range, and holding in the medium until the temperature throughout the alloy is substantially uniform. The alloy is then allowed to cool in air through the martensitic range.

MARTENSITE. A microconstituent or structure in hardened steel, characterized by an acicular, or needle-like pattern, and having the maximum hardness of any of the decomposition products of austenite.

MECHANICAL PROPERTIES. Properties which reveal the reactions, elastic and inelastic, of a material to applied forces. Sometimes designated erroneously as "physical properties."

Some common mechanical properties, tests, and units are listed below:

Mechanical Property	Test	Units: Customary (SI metric)
Cold bending	Cold-bend	angular degrees (radians)
Compressive strength	Compression	psi (kPa)
Corrosion-fatigue limit	Corrosion-fatigue	psi (kPa)
Creep strength	Creep	psi (kPa) per time and temperature
Elastic limit	Tension; Compression	psi (kPa)
Elongation	Tension	per cent of a specific specimen gage length
Endurance Limit	Fatigue	psi (kPa)
Hardness	Static: Brinell; Rockwell; Vickers	empirical numbers
	Dynamic: Shore (Scleroscope)	empirical numbers
Impact	Notched-bar impact (Charpy; Izod)	ft-lb (Joule)
Impact, bending	Bend	ft-lb (Joule)
Impact, torsional	Torsion-impact	ft-lb (Joule)
Modulus of rupture	Bend	psi (kPa)
Proof stress	Tension; Compression	psi (kPa)
Proportional limit	Tension; Compression	psi (kPa)
Reduction of area	Tension	per cent
Shear strength	Shear	psi (kPa)
Tensile strength	Tension	psi (kPa)
Torsional strength	Torsion	psi (kPa)
Yield point	Tension	psi (kPa)
Yield strength	Tension	psi (kPa)

MODULUS OF ELASTICITY (YOUNG'S MODULUS).

A measure of stiffness, or rigidity, expressed in pounds per sq in. Developed from the ratio of the stress, as applied to a tension test specimen, to the corresponding strain, or elongation of the specimen, and applicable for tensile loads below the elastic limit of the material.

NITRIDING. A surface hardening process in which certain steels are heated to, and held at a temperature below the transformation range in contact with gaseous ammonia or other source of nascent nitrogen in order to effect a transfer of nitrogen to the surface layer of the steel. The nitrogen combines with certain alloying elements, resulting in a thin case of very high hardness. Slow cooling completes the process.

NORMALIZING. A thermal treatment consisting of heating to a suitable temperature above the transformation range and then cooling in still air. Usually employed to improve toughness or machinability, or as a preparation for further heat treatment.

PEARLITE. A microconstituent of iron and steel consisting of a lamellar aggregate of ferrite and cementite.

PHYSICAL PROPERTIES. Properties which pertain to the physics of a material, such as density, electrical conductivity, and coefficient of thermal expansion. Not to be confused with mechanical properties (q.v.).

PROPORTIONAL LIMIT. The maximum stress at which strain remains directly proportional to stress.

QUENCHING AND TEMPERING. A thermal process used to increase the hardness and strength of steel. It consists of austenitizing, then cooling at a rate sufficient to achieve partial or complete transformation to martensite. Tempering should follow immediately, and involves reheating to a temperature below the transformation range and then cooling at any rate desired. Tempering improves ductility and toughness, but reduces the quenched hardness by an amount determined by the tempering temperature used.

REDUCTION OF AREA. A measure of ductility determined by the difference between the original cross-sectional area of a tension test specimen and the area of its smallest cross section at the point of fracture. Expressed as a percentage of the original area.

ROCKWELL HARDNESS (HRB or HRC). A measure of hardness determined by the Rockwell hardness tester, by which a diamond spheroconical penetrator (Rockwell C scale) or a hard steel ball (Rockwell B scale) is forced into the surface of the test material under sequential minor and major loads. The difference between the depths of impressions from the two loads is read directly on the arbitrarily calibrated dial as the Rockwell hardness value.

SPHEROIDIZE ANNEALING (SPHEROIDIZING). A thermal treatment which produces a spheroidal or globular form of carbide in steel. This is the softest condition possible in steel, hence, the treatment is used prior to cold deformation. Spheroidizing also improves machinability in the higher carbon grades.

STRESS RELIEVING. A thermal cycle involving heating to a suitable temperature, usually 1000/1200 F, holding long enough to reduce residual stresses from either cold deformation or thermal treatment, and then cooling slowly enough to minimize the development of new residual stresses.

TEMPER BRITTLENESS. Brittleness that results when certain steels are held within, or are cooled slowly through, a specific range of temperatures below the transformation range. The brittleness is revealed by notched-bar impact tests at or below room temperature.

TEMPERING. See Quenching and Tempering.

TENSILE STRENGTH. The maximum tensile stress in pounds per sq in. which a material is capable of sustaining, as developed by a tension test.

TENSION TEST. A test in which a machined or full-section specimen is subjected to a measured axial load sufficient to cause fracture. The usual information derived includes the elastic properties, ultimate tensile strength, and elongation and reduction of area.

THERMAL TREATMENT. Any operation involving the heating and cooling of a metal or alloy in the solid state to obtain desired microstructure or mechanical properties. This definition excludes heating for the sole purpose of hot working.

TRANSFORMATION RANGES. Those ranges of temperatures within which austenite forms during heating, and transforms during cooling.

TRANSFORMATION TEMPERATURE. The temperature at which a change in phase occurs. The term is sometimes used to denote the limiting temperature of a transformation range. The symbols of primary interest for iron and steels are:

- Ac_{em} —In hypereutectoid steel, the temperature at which the solution of cementite in austenite is completed during heating.
- Ac₁ —The temperature at which transformation of ferrite to austenite begins during heating.
- Ac₃ —The temperature at which transformation of ferrite to austenite is completed during heating.
- Ar₁ —The temperature at which transformation of austenite to ferrite or to ferrite plus cementite is completed during cooling.
- Ar₃ —The temperature at which transformation of austenite to ferrite begins during cooling.
- M_s —The temperature at which transformation of austenite to martensite begins during cooling.
- M_f —The temperature at which transformation of austenite to martensite is substantially completed during cooling.

Note: All these changes (except the formation of martensite) occur at lower temperatures during cooling than during heating, and depend on the rate of change of temperature.

VICKERS HARDNESS (HV). A measure of hardness determined by the Vickers, or Diamond Pyramid Hardness Test, which is similar in principle to the Brinell test, but utilizes a pyramid-shaped diamond penetrator instead of a ball.

YIELD POINT. The minimum stress at which a marked increase in strain occurs without an increase in stress.

YIELD STRENGTH. The stress at which a material exhibits a specified deviation from the proportionality of stress to strain. The deviation is expressed in terms of strain, and in the offset method, usually a strain of 0.2 per cent is specified.

YOUNG'S MODULUS. See Modulus of Elasticity.

INDEX

y steels	Carbo-nitriding treatment for surface hardening 68
AISI/SAE standard grades and ladle chemical ranges 34	Carburizing treatment for surface hardening 66
Definition 19 Effects of chemical elements 19	Chemical analyses of carbon and alloy steel AISI/SAE grades 25
Hardenability limits tables 51 Ladle chemical ranges and limits 40 Mechanical properties tables Carburizing grades 121 Oil-hardening grades 145	Conversion tables Hardness 181 Metric equivalents for weights & measures 184 Temperature 182
Water-hardening grades 137 Machinability 172	Cyaniding treatment for surface hardening 68
Product analysis tolerances 42 Rolling tolerances 190	Degassing, vacuum 15
SAE typical thermal treatments	Eddy-current testing 176
Carburizing grades 74	Electric-arc furnace 10
Directly hardenable grades 78	
	Elements, chemical, effects on machinability 169
Isothermal 73 Solution, or Full 72 Spheroidize 72 Stress-relief 71 Sub-critical 72	Elements, chemical, effects on steel properties 19 Aluminum 23 Boron 23 Carbon 20 Chromium 22 Copper 22 Lead 23
as of square and round bars 186	Manganese 20
tempering 65	Molybdenum 22 Nickel 21
3asic open-hearth furnace 7	Nitrogen 23 Phosphorus 20
ic oxygen furnace 8	Silicon 21
siast furnace 6	Sulfur 21 Vanadium 22
Boron steel grade analyses	End-quench hardenability limits tables 51
Alloy and Alloy H 38 Carbon H 31	End-quench hardenability testing 44
Capped steels 14	Flame-hardening treatment for surface 68
: bon steels	Flats, weights of square-edge 188
AISI/SAE standard grades and ladle chemical ranges 26	Free-machining carbon steels 30, 168
Definition 19	Furnace, blast 6
Effects of chemical elements 19 Free-machining grades, chemical analyses 30 Hardenability limits tables 51 Ladle chemical ranges and limits 32 Machinability 168	Furnaces, steelmaking Basic oxygen 8 Electric-arc 10 Open-hearth 7
Mechanical properties tables	Glossary of steel testing & thermal treating terms 19
Carburizing grades 87	Grain size 81
Water- and oil-hardening grades 93	Grain Size 01
Product analyses tolerances 33	Hardenability 43
Rolling tolerances 190	Calculation of end-quench 46
SAE typical thermal treatments Carburizing grades 76 Water- and oil-hardening grades 77	End-quench testing 44 Limits tables 51
Trace and on maracining grades //	Hardening, induction 68

INDEX (CONT'D)

Hardening treatment, surface 66	Pig iron production 6
Hardness conversion tables 181	Piping in the ingot 12
H-Steels Alloy grades, chemical analyses 36 Alloy boron grades, chemical analyses 38 Carbon and carbon boron grades, chemical analyses 31 Hardenability limits tables 51	Quenching and tempering, conventional 61 Quenching media 62 Raw materials for steelmaking 5 Rimmed steels 12
Induction hardening treatment for surface 68	Rolling tolerances, carbon and alloy steels 190
Ingots, segregation in steel 12 Isothermal treatments 63 Austempering 65 Martempering 65	SAE typical thermal treatments Alloy steels, carburizing grades 74 Alloy steels, directly hardenable grades 78 Carbon steels, carburizing grades 76 Carbon steels, water-& oil-hardening grades 77
Killed steels 13	Segregation in the ingot 12
	Semi-killed steels 14
Ladle chemical ranges and limits Alloy steels 40 Carbon steels 32 "M" steels, grade analyses 30	Steelmaking methods Basic oxygen process 8 Electric-arc process 10 Open-hearth process 7
Machinability of steel 168	Strand casting 14
Machinability testing 168 Magnetic measurement testing 175 Magnetic particle testing 175 Martempering 65	Surface hardening treatments 66 Carbo-nitriding 68 Carburizing—liquid, gas, pack 66 Cyaniding 68 Flame hardening 68 Induction hardening 68
Mechanical properties obtainable in H-steels Oil quench 58, 60 Water quench 59, 60	Nitriding 67 Taconite 5
Mechanical properties tables Alloy carburizing grades 121 Alloy oil-hardening grades 145 Alloy water-hardening grades 137 Carbon carburizing grades 87 Carbon water- and oil-hardening grades 93	Temperature conversion table 182 Thermal treatments Austempering and martempering 65 Conventional quenching and tempering 61 Normalizing and annealing 71 Quenching media 62
Metric equivalents for weights and measures 184	SAE typical 74-79
Nitriding treatment for surface hardening 67 Nondestructive examination of steel 173 Electromagnetic test methods 175 Eddy current 176 Magnetic measurement 175	Tool steels, identification & type classification 178 Types of steel (capped, killed, rimmed, semi-killed) 12 Ultrasonic testing 173
Magnetic particle 175 Ultrasonic testing 173 Normalizing and annealing 71	Vacuum treatment 15 Ladle degassing 17 Stream degassing 16 Vacuum lifter degassing 17
Open-hearth furnace, basic 7	Weights of square and round bars 186
Oxygen furnace, basic 8	Weights of square-edge flats 188

HEAT TREATING

FOR THE COMPETITIVE EDGE!

AT YOUR SERVICE...

We encourage you to visit our facility and discuss your specific needs with our specialists. Discover why the responsive partnership we develop with our customers has earned AST a reputation for creative problem solving. See firsthand the advanced equipment, painstaking laboratory diagnostics and unique JobShoppe™ control system that keep in step with technology's rapid pace. Know that our goal is unwavering quality control- with every job, every time.

With pride, we participate in these organizations.

The leadership position of AST today is a direct result of the vision and dedication to service of Prosper P. Powell (right), who founded the company in 1943. (1969 photo)

Akron Steel Treating Company

336 Morgan Avenue, Akron, OH 44311 • P.O. Box 2290, Akron, OH 44309-2290 330-773-8211 • Fax: 330-773-8213 • Toll Free: 1-800-364-ASTC(2782) Email: info@AkronSteelTreating.com • www.AkronSteelTreating.com

Combining Art & Science for Solutions that Work